• 제목/요약/키워드: Spiral tube

검색결과 88건 처리시간 0.023초

관외착빙형 빙축열조의 제빙성능에 관한 연구 (An Experimental Study of Ice-Making Performance on the Ice Storage System using Spiral Tube)

  • 박용주;임광빈;조남철
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2004
  • An experimental investigation was performed to compare ice making characteristics of ice storage system with smooth and spiral tube. During the freezing processes in the shell and tube type ice storage tank with smooth tube, heat resistance of the ice layer caused a decrease in freezing rate. Also, the phenomena of bridging made the increasing rate of ice making less. In order to improve the ice making rate, spiral tube(pitch=6mm) was used in the present study. The ice making rate and the decreasing of bridging for the spiral tube were higher than those for the smooth tube.

Thermal Performance of a Spirally Coiled Finned Tube Heat Exchanger Under Wet-Surface Conditions

  • Wongwises Somchai;Naphon Paisarn
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.212-226
    • /
    • 2006
  • This paper is a continuation of the authors' previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data.

Study on velocity profiles around spiral baffle plates in a horizontal circular tube without inner tubes

  • Chang, Tae-Hyun;Lee, Kwon-Soo;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.403-411
    • /
    • 2016
  • Usually shell and tube heat exchangers are employed to recover energy between fluids. Recently, numerous papers on these heat exchangers have been published; however, the velocity and temperature profiles or comparison of the features of the flow with or without inside tubes have rarely been described. In this research, experimental and numerical studies were carried out to investigate the characteristics of the flow around the spiral baffle plates without inside tubes in a horizontal circular tube using a particle image velocimetry method and ANSYS 14.0~15.0 version (Fluent). The results showed that swirling flow was produced between the spiral baffle plates. The tangential components were strong between the two spiral baffles; however, the axial or radial velocities components were indicating nearly zero. From the spiral motion in the space of the two baffles, it is considered that there were no dead zones between the spiral baffle.

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • 손영석;신지영
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

Spiral Tube 내에서의 3차원 유동 해석 (A Numerical Study of 3-D Flows in Spiral Tubes with Square Cross-Section)

  • 허남건;김성원
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • Spiral tube heat exchangers can find numerous applications in many engineering fields. Flow in spiral tubes is interest to engineers due to occurrence of secondary flow which enhances the cross-sectional mixing and the heat transfer rate. In the present study, an incompressible viscous 3-D flow in spiral tubes with rectangular cross-section of various torsion rate and Reynolds number is studied by using a finite volume method. It is shown that the axial velocity profile is affected by the secondary flow motion. Because there is some difference from correlation proposed by Hur et al., a lot of analysis and arrangement of experimental results are needed. This study showed the results of variation of hydrodynamic entry length for torsion and Re numbers.

  • PDF

수치해석에 의한 TUBE-AND-PLATE형 응축기의 판 형태 및 입구 형상변화에 따른 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of Tube-and-Plate Condenser with Different Plate Shapes and Inlet Geometries using Numerical Analysis)

  • 최우진;권오붕;임희창;김명관;이연수
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.49-55
    • /
    • 2009
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new tube-and-plate type condenser which will cost less and will be as efficient as the spiral type. As a standard condenser type, tube-and-plate type condenser is used in this study. A two-dimensional numerical model for the tube-and-plate type condenser is proposed, and the flow and heat transfer characteristics for several types of condensers are investigated.

  • PDF

나선형 핀-튜브 증발기를 적용한 냉장고의 성능 특성에 관한 연구 (Study on Performance Characteristics of Spiral Fin-Tube Evaporator Applied to Domestic Refrigerator-Freezers)

  • 이상헌;윤원재;김용찬;이무연;윤성중
    • 대한기계학회논문집B
    • /
    • 제37권3호
    • /
    • pp.205-212
    • /
    • 2013
  • 본 연구는 평판 핀-튜브 증발기와 나선형 핀-튜브 증발기를 적용한 가정용 냉장고의 성능특성 비교를 통하여 기존에 사용하고 있는 핀-튜브 증발기를 나선형 핀-튜브 증발기로 대체할 수 있는 가능성을 고찰하는데 그 목적이 있다. 실험은 2단 15열의 평판 핀-튜브 증발기와 2단 15열에서 2단 11열까지 열 수를 단계적으로 감소시킨 3종류의 나선형 핀-튜브 증발기를 실제 냉장고에 적용하여 수행하였다. 핀-튜브 증발기의 열 수가 감소할수록 냉동시스템의 최적 냉매 충전량은 감소하였으며, 2단 13열과 2단 11열의 나선형 핀-튜브 증발기를 장착한 냉장고의 소비전력은 기존 2단 15열의 평판 핀-튜브 증발기를 적용한 냉장고 대비 각각 1.5%와 2.8% 감소하였다. 또한 내착상 실험결과 나선형 핀-튜브 증발기가 기존 평판 핀-튜브 증발기와 비교하여 같은 착상조건에서 3~7% 향상된 냉각능력을 보였다. 냉각속도 실험에서는 모든 증발기는 동등수준의 성능을 나타내었다.

Spiral 구조 EGR Cooler의 열유동 특성 평가 (Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type)

  • 허형석;원종필;박경석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

튜브형상에 따른 배기가스 재순환 냉각 장치 열전달 성능 평가 (Heat Transfer Analysis of EGR Cooler with Different Tube Shape)

  • 손창현
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.112-117
    • /
    • 2007
  • With the Euro-4 regulation coming into effect, the domestic car industry is forced to look for newer options to reduce NOX in the exhaust. EGR(Exhaust Gas Recirculation) Cooler is an effective method for the reduction of NOX form a diesel engine. High efficiency, low pressure loss and compactness are desirable features of an EGR Cooler. The cooling performance of EGR depends on the shape of tubes and the location of the entrance and exit. This paper reports the computational work conducted to estimate the performance of EGR cooler with three different cross section tubes and a triangular spiral tube. Three dimensional computation results show that the triangular tube is more effective than circular and rectangular tube. The most effective geometry is a triangular spiral tube with offset inlet and outlet locations.

나선형 핀튜브 열교환기의 열전달 특성에 관한 실험적 연구 (Experimental Study on the Heat Transfer Characteristics of Spiral Fin-Tube Heat Exchangers)

  • 윤린;김용찬;김슬우;최종민
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.529-535
    • /
    • 2005
  • This study experimentally examines the air-side performance of spiral finned tube heat exchangers. The effects of fin spacing, fin height, and tube alignment were investigated. Reduction of fin spacing decreased the Colburn j factor. However, the effect of fin height on the Colburn j factor was negligible. An increase of tube row decreased the Nusselt number for both staggered and in-line tube alignments. However, the decrease of the Nusselt number for the in-line tube alignment was much more significant than that of the staggered tube alignment. The average Nusselt number of the staggered tube alignment was larger than that of the in-line tube alignment by $10\%$ when the Reynolds number ranged from 300 to 1700. An empirical correlation of the Nusselt number was developed by using geometric parameters of heat exchanger and correction factors. The correction factor considered the effects of tube alignment and number of tube rows on the heat transfer. The proposed correlation yielded a mean deviation of $4\%$ from the present data.