• Title/Summary/Keyword: Spiral Resonator

Search Result 40, Processing Time 0.021 seconds

A Novel Dual-Mode Bandpass Filter Based on a Defected Waveguide Resonator

  • Guan, Xuehui;Fu, Wei;Liu, Haiwen;Ahn, Dal;Lim, Jong-Sik
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.953-956
    • /
    • 2011
  • A novel dual-mode bandpass filter (BPF) using a dual spiral-shaped defected ground waveguide (DGW) resonator is proposed in this letter. The dual-mode characteristic of this filter is achieved by loading a defected T-shaped stub at the midline of the spiral-shaped DGW resonator. Also, non-orthogonal input and output feed-lines are adopted in the filter. Based on the compact DGW structure, a dual-mode BPF with central frequency of 1.5 GHz for the global positioning system is designed, fabricated, and measured. Measured results agree well with the predicted response and verify the proposed methodology.

A Design of Novel Compact Microstrip Bandstop Filters Based on Split-Ring Resonators and Spiral Resonators (Split-Ring 공진기와 Spiral 공진기를 이용한 새로운 소형의 마이크로스트립 대역 저지 필터 설계)

  • Lee, Jong-Hyuk;Oh, Young-Chul;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.796-808
    • /
    • 2007
  • In this paper, two novel compact microstrip bandstop filters using complimentary split ring resonators(CSRRs) and spiral resonators is proposed. The first one is the bandstop filter using an array of CSRRs etched on the center line of a microstrip. The bandstop is due to the presence of negative effective permittivity and positive permeability near resonant frequency which prevent the wave propagation. The second on is the bandstop filter using an array of spiral resonators etched on the center line of a microstrip. The bandstop is due to the self-resonance of spiral circuit. We have achieved controllable resonance frequency and bandwidth, super compact dimension, low insertion losses in the passband and high level of rejection in the stopband with sharp cutoff. The electrical sizes of two proposed filter are very small. Additionally, they can be easily fabricated and compatible with MMIC or PCB technology.

Miniaturization of Inductive Resonator for Implementation of Wireless Power Transfer Technology Using Resonant Inductive Coupling (자기 공진 결합 방식을 이용한 무선 전력 전송기술 구현을 위한 자기 공진기 소형화 설계)

  • Cho, Young Seek;Park, Ji Hye;Nam, Yun Seo;Choi, Seyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1798-1804
    • /
    • 2014
  • A novel inductive resonator for the implementation of wireless power transfer using resonant inductive coupling is presented. The proposed inductive resonator is much smaller than the helix shape resonator suggested by MIT research team but operates the same resonant frequency with comparable wireless power transfer efficiency. The proposed inductive resonator is a spiral shape ($1,696cm^3$), which is 97 % smaller than the helix shape ($59,376cm^3$). The wireless power transfer efficiency is less than 9 % when compared to the helix shape resonator. With the reduce size and comparable efficiency, this novel inductive resonator can be used in practical application of wireless power transfer.

X-band Low Phase Noise Push-Push Oscillator Using Metamaterial Resonator (Metamaterial 공진기를 이용한 레이더 송. 수신기용 X-대역 고출력. 저위상 잡음 Push-Push 발진기)

  • Kim, Yang-Hyun;Seo, Chul-Hun;Ha, Sung-Jae;Lee, Bok-Hyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.1-5
    • /
    • 2009
  • In this paper, low phase noise push-push oscillator (OSC) using the metamaterial resonator for missile defense systems and satellite communication was design and implemented. The metamaterial resonator has the large coupling coefficient value, which makes a high Q value, and has reduced phase noise of OSC. The OSC with 1.8 V power supply has phase noise of -117 dBc/Hz @100 kHz in the 12 GHz. When it has been compared with metamaterial resonator and coventional spiral resonator, the reduced Q value has been -29.7 dB and -47.6 dB respectively. This low phase noise OSC using metamaterial resonator could be available to a OSC in X-band.

Design of A Power Oscillator Using Spiral Resonator (나선형 공진기를 이용한 고출력 발진기의 설계)

  • Koo, Ja-Kyung;Lim, Jong-Sik;Lee, Jun;Lee, Jae-Hoon;Han, Sang-Min;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3866-3872
    • /
    • 2010
  • This paper presents a design of high power oscillator using a spiral resonator and high power transistor with measurement. Even lots of drawbacks are known in design of oscillators using high power transistors, the spiral resonator is adopted because it has relatively high Q out of planar resonators. The designed power oscillator at 1.8GHz is fabricated and tested. Measurement shows the obtained output power is 23.5dBm at 1.74GHz with -146.76dBc/Hz of phase noise at 1MHz offset. In addition, it is illustrated that the frequency stability is excellent with the shift less than 1MHz and the measured maximum output power is around 24dBm when the bias voltages are adjusted.

A design of a lowpass filter using Quad-Spiral Defected Ground Structure (Quad-Spiral Defected Ground Structure를 이용한 저역통과 여파기 설계)

  • Jeong, Yong-Woo;Kim, Chul-Soo;Park, Kyu-Ho;Ahn, Dal
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • A new structure to design low pass filters (LPFs) is presented rho proposed structure has the etched shape of Quad-Spiral DGS(Defected Ground Structure) on microstrip transmission lines. By extracting the equivalent circuit elements of unit Quad-Spiral DGS, LPFs are designed easily. The equivalent circuit of Quad-Spiral DGS consists of a step impedance resonator and lumped elements. The proposed LPF provided steep rejection characteristics with 5-poles. Experimental results show excellent agreements with circuit simulation results in wide band and the validity of our circuit modeling for LPF design. The result shows another possibility of Quad Spiral DGS for microwave devices.

  • PDF

Design of Variable Active Inductor with Feedback LC-Resonator for Improvement of Q-Factor and Tuning of Operating Frequency (Q 지수의 개선과 동작 주파수 조절을 위해 궤환 LC-공진기를 이용한 가변 능동 인덕터의 설계)

  • Seo, Su-Jin;Ryu, Nam-Sik;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.311-320
    • /
    • 2008
  • In this paper, a new variable active inductor using a conventional grounded active inductor with feedback variable LC-resonator is proposed. The grounded active inductor is realized by the gyrator-C topology and the variable LC-resonator is realized by the low-Q spiral inductor and varactor. This variable LC-resonator can compensate the degradation of Q-factor due to parasitic capacitance of a transistor, and the frequency range with high Q-factor is adjustable by resonance frequency adjustment of LC-resonator. The fabricated variable active inductor with Magnachip $0.18{\mu}m$ CMOS process shows that high-Q frequency range can be adjusted according to varactor control voltage from 4.66 GHz to 5.45 GHz and Q-factor is higher than 50 in the operating frequency ranges. The measured inductance at 4.9GHz can be controlled from 4.12 nH to 5.97 nH by control voltage.

Design of a High Power Frequency Tuneable Resonator for Wireless Power Transfer (무선 전력 전송용 고출력 주파수 가변 공진기 설계)

  • Park, Jaesu;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.352-355
    • /
    • 2013
  • In this paper, a high power tuneable resonator for a wireless power transfer system based on magnetic resonance is proposed. A spiral structure is used for a self-resonant coil and tuneable trimmer capacitors are added at the edges of resonant coils such that the frequency can be easily tuned. 3D simulation tools and equivalent circuit modeling method are used for predicting self-resonant frequency and scattering parameters according to the change of capacitor values. From the measurement of the prototype WPT system, the resonant frequency could be controlled from 3.0 MHz to 4.5 MHz and the transmission efficiency way over 50 % when the distance between transmitting coil and receiving coil was 160 mm.

Design of The Dual-band Resonator for Magnetic Resonance Wireless Power Transfer (자기공진방식 이중대역 무선전력전송 공진기 설계)

  • Yoon, Nanae;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.41-45
    • /
    • 2015
  • In this paper, the single port dual-band resonator for magnetic resonance wireless power transfer is proposed. The proposed dual-band resonator is consists of 20 turns spiral coil, a single loop, matching circuit, lumped elements, and a single port. The two sides of the matching circuit are connected to via holes. The spiral coil is operated at MF-band and single loop is operated at HF-band, respectively. We use two of the same structure resonators and simulated and the power transfer efficiency was calculated. The efficiency of simulation and measurement is above 60% at the MF and HF bands, and the distance is 100 mm.

Analysis and Design Technique of a Spiral Inductor for a Wireless Charging of Electric Vehicle (전기자동차 무선 충전용 스파이럴 인덕터의 해석 및 설계 기법)

  • Hwang, In-Gab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.142-149
    • /
    • 2019
  • The coils to transmit the electric energy are necessary to charge an electric vehicle wirelessly. There are several types of coils, from basic circular coils to DD-type coils for enhancing the coupling effect between two coils. However, DD-type coils with a good coupling effect between coils have a disadvantage in use because of the structure complexity of the power conversion device of transmitting and receiving side. In this paper, we propose a method to calculate the inductance value and to design the size of the spiral inductor which is convenient to fabricate when the power is transmitted wirelessly by using two coils in free space. Since the bifurcation phenomenon occurs when the XLm value is similar to the load resistance value in the resonator the XLm value was selected to be equal to the minimum load resistance value to minimize this phenomenon, and the inductance value required for the resonator was calculated. In order to realize the calculated inductance value by the spiral inductor, the relationship between the inductance value and the size, the number of turns, the total coil length of a spiral inductor was investigated. In addition, the change of coupling coefficient k according to the horizontal separation of two coils was examined and an appropriate inductor was selected.