• Title/Summary/Keyword: Spinel cathode

Search Result 93, Processing Time 0.026 seconds

The correlation of the eletrochemical properties for $Li[Li_yMn_{2-y}]O_4$ cathode materials ($Li[Li_yMn_{2-y}]O_4$ 정극 활물질에 대한 전기화학적 특성의 상호관계)

  • Jeong, In-Seong;Kim, Min-Sung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.269-272
    • /
    • 2000
  • Spinel $LiMn_2O_4$ samples are prepared by heating a $LiOH{\cdot}H_2O/MnO_2$ mixture in air at $800^{\circ}C$ for 36h, and their structure and electrochemical performance are studied by using X-ray diffraction, Cyclic Voltammetry, AC Impedance, and Charge-discharge measurements. It was found that the electrochemical properties of the $LiMn_2O_4$ samples are very sensitive to substituted volume of lithium. Initial impedances of all cathode was similar. Initial resistance was $60{\sim}70{\Omega}$. Reaction peak of Cyclic voltammetry was weak by increase of substituted volume of lithium. $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It showed excellent property in sample revealed good structure and other electrochemical property.

  • PDF

Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries (리튬 2차전지용 전해질 소재의 개발 동향)

  • Lee, Young-Gi;Kim, Kwang-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.242-255
    • /
    • 2008
  • In lithium-ion batteries(LIB), the development of electrolytes had mainly focused on the characteristics of lithium cobalt oxide($LiCoO_2$) cathode and graphite anode materials since the commercialization in 1991. Various studies on compatibility between electrode and electrolytes had been actively developed on their interface. Since then, as they try to adopt silicon and tin as anode materials and three components(Ni, Mn, Co), spinel, olivine as cathode materials for advanced lithium batteries, conventional electrolyte materials are facing a lot of challenges. In particular, requirements for electrolytes performance become harsh and complicated as safety problems are seriously emphasized. In this report, we summarized the research trend of electrolyte materials for the electrode materials of lithium rechargeable batteries.

Relation of X-ray diffraction and charge/discharge capacity Of LiMn$_2$O$_4$ cathode for Lithium ion batteries (리튬 이온 전지용 LiMn$_2$O$_4$ 정극의 X-선 회절 분석과 충방전 용량과의 관계)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.347-350
    • /
    • 1998
  • We studied relation of X-ray diffraction and charge/discharge capacity of LiMn$_2$O$_4$ cathode. LiMn$_2$O$_4$ is prepared by reacting stoichiometric mixture of LiOH.$H_2O$ and MnO$_2$ (mole ratio 1 : 2) and heating at $700^{\circ}C$, 80$0^{\circ}C$ for 24hr, 36hr, 48hr, 60hr and 72hr. Through X-ray diffraction pattern, it is analyzed that crystal structure and lattice parameter and peak ratio so on. We obtained X-ray diffraction pattern that varied lattice parameter and peak intensity by function of calcining temperature and time. Cathode active materials calcined at 80$0^{\circ}C$ for 36hr shown that (111)/(311) Peak ratio at X-ray diffraction pattern was 0.37. It means that crystal structure is formed very well in this temperature and time. In the result of charge/discharge test, cathode active material calcined at 80$0^{\circ}C$ for 36hr displayed excellent charge/discharge properties than that of cathode active materials calcined at other temperature and title. In this study, we certified that spinel structure basied cubic is formed very well at 80$0^{\circ}C$ for 36hr. In this case, (111)/(311) peak ratio at X-ray diffraction is 0.37, and charge/discharge properties is excellent than others.

  • PDF

Effects on Electrochemical Performances of Conductive Agents with Different Particle Size in Spinel LiMn2O4 Cathode for Li-ion Batteries (리튬이온전지용 스피넬계 LiMn2O4 양극에서 상이한 입자크기를 가진 전도성물질이 전기화학적 성능에 미치는 영향)

  • Lee, Chang-Woo;Lee, Ml-Sook;Kim, Hyun-Soo;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.702-707
    • /
    • 2005
  • Spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conductive agents, and then carried out their comparative investigation for the performances of the $Li/LiMn_2O_4$ cells using different conductive agents with different particle size. In addition, their electrochemical impedance characteristic of $Li/Mn_2O_4$ cells using different conductive agents is effectively identified through a.c. impedance technique. As a consequence, $Li/LiMn_2O_4$ cells with Super P Black show better electrochemical performances ascribed to the significant contribution of feasible ionic conduction due to larger particle size than those with Acetylene Black.

Crystal structure refinement and synthesis of $LiAl_5O_8-LiFe_5O_8$ ($LiAl_5O_8-LiFe_5O_8$ 합성과 결정구조 해석)

  • 조남웅;김찬욱;장세기;유광수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.244-252
    • /
    • 1997
  • The pseudo-spinel type solid solution, $LiAl_{2.5}/Fe_{2.5}O_8$ was prepared by reaction of $LiCO_3, Al_2O_3, Fe_2O_3$ mixture at 1620K, which can be used for cathode material in lithium batteries. Its structure was investigated by Rietveld profile-analysis of XRD in detail. The space group of solid solution is $P4_3$32(a=8.1293$\AA$) and the final residual index of structure refinement was about 5%. Cations $Al^{3+}, Fe^{3+}$ are located at both tetra- and octahedral-coordination and $Li^+$ ions are occupied in the octahedral 4b-, 12d-site of the inverse spinel.

  • PDF

A Study on Electronic Structures of Spinel-Type Manganese Oxides for Lithium Ion Adsorbent using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법을 이용한 리튬이온 흡착제용 스피넬형 망간산화물의 전자상태에 관한 연구)

  • Kim, Yang-Su;Jeong, Gang-Seop;Lee, Jae-Cheon
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Discrete-variational(DV)-$X{\alpha}$ method was applied to investigate the electronic structures of spinel- type manganese oxide which is well known to the high performance adsorbent or cathode material for lithium ion. The results of DOS(density of states) and Mulliken population analysis showed that Li was nearly fully ionized and interactions between Mn and O were strong covalent bond. The effective charge of Li and Mn was +0.77 and +1.44 respectively and the overlap population between Mn and O was 0.252 in $LiMn_2O_4$. These results from DV-X$\alpha$ method were well coincided with the experimental result by XPS analysis and supported the feasibility of theoretical interpretation for the $LiMn_2O_4$ compound.

Oxidation State of Manganese in LiMn2O4 Powders and its Effect on Electrochemcal Properties

  • Kim, Seon-Hye;Lee, Kook-Jae;Shim, Kwang-Bo;Kim, Chang-Sam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1220-1221
    • /
    • 2006
  • [ $LiMn_2O_4$ ] powders for lithium ion batteries were synthesized from two separate raw material pairs of LiOH/MnO and $LiOH/MnO_2$. The powders prepared at 780 and $850^{\circ}C$ and their difference of electrochemical properties were investigated. Both powders calcined at 780 and $850^{\circ}C$ were composed of a single-phase spinel structure but those treated at $850^{\circ}C$ showed a lower intensity ratio of $I_{311}$ to $I_{400}$, a slightly larger lattice parameter, and an increased discharge capacity by 10% under $3.0{\sim}4.3V$ voltage range. The XPS study on the oxidation states of manganese repealed that powders made from LiOH/MnO had less $Mn^{3+}$ ion and gave better battery performances than those from $LiOH/MnO_2$.

  • PDF

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries (리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성)

  • Kong, Ming Zhe;Nguyen, Van Hiep;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

Fabrication of LiMn2O4 Thin-Film Rechargeable Batteries by Sol-Gel Method and Their Electrochemical Properties (졸-겔 방법을 이용한 LiMn2O4 박막 이차 전지 제작 및 전기화학적 특성 조사)

  • Lee, J.H.;Kim, K.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • Structural and electrochemical properties of spinel oxide $LiMn_2O_4$ thin films prepared by using a sol-gel method on Pt/Ti/$SiO_2$/Si substrates were investigated. When Li/Mn molar ratio of the film was smaller than 0.5, $Mn_2O_3$hase was found to coexist with $LiMn_2O_4$. Half-cell batteries fabricated using the $LiMn_2O_4$ films as the cathode were put into chargedischarge (C-D) cycles and the change in structural properties of the cathode after the cycles was examined by X-ray diffraction and Raman spectroscopy. As the C-D cycle number increases, the discharge capacity of pure $LiMn_2O_4$ battery gradually decreases, being reduced to 72% of the initial capacity at 300 cycles. Such capacity fading is attributable to the decrease in the number of $Li^+$ ions that return to the tetrahedral sites of the spinel structure during the discharge step and the resultant increase in $Mn^{4+}$ density in the film. Also, $Mn_2O_3$ phase gradually appeared in the film as the cycle number increases.