• Title/Summary/Keyword: Spine fixation

Search Result 166, Processing Time 0.032 seconds

The Management of Bilateral Interfacetal Dislocation with Anterior Fixation in Cervical Spine : Comparison with Combined Antero-Posterior Fixation

  • Kim, Ki-Hong;Cho, Dae-Chul;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.305-310
    • /
    • 2007
  • Objective : Combined antero-posterior fixation has been a standard method for bilateral interfacetal dislocation in cervical spine. The purpose of this study is to evaluate the efficacy and complication of anterior cervical stabilization in treatment of bilateral interfacetal dislocation. Methods : A total of 65 cases of traumatic bilateral interfacetal dislocation in cervical spine who were managed in our institution, from Mar. 1997 to Feb. 2006, were included in this study. Closed reduction was tried in all cases before operation. If closed reduction was accomplished successfully, only anterior cervical fixation was performed (Group I), and attempted to place screws bicortically as possible with unicortical screws. If failed, posterior open reduction with fixation was first tried, followed by anterior cervical fixation (Group II). All patients were evaluated for neurological outcome and radiological evidence of healing. Results : The Group I included 47 patients and the Group II, 18 patients. The improvement of Frankel grade and increase of mean cervical lordosis angles were not statistically different between two groups. Screw-plate system used did not influence the outcome. On follow up, solid bone fusion was evident and there were no cases of instability in both groups. Conclusion : Our study demonstrated that anterior cervical fixation on BID is safe and effective in comparison with combined antero-posterior cervical fixation.

Anterior Lumbar Interbody Fusion with Pedicle Screw Fixation for Elderly Isthmic Spondylolisthesis

  • Lee, Dong-Yeob;Lee, Sang-Ho;Maeng, Dae-Hyeon;Jang, Jee-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • Objective : The surgical outcome of anterior lumbar interbody fusion[ALlF] with pedicle screw fixation for elderly isthmic spondylolisthesis was analyzed. Methods : Consecutive nineteen elderly patients [aged 65 years or more] with isthmic spondylolisthesis [Grade I or II] who underwent single level ALIF with pedicle screw fixation in 2002 were analyzed. Using clinical chart and mailed questionnaires, preoperative and postoperative Visual Analogue Scale[VAS] of back and leg pain and postopertive Macnab criteria were evaluated. Results : The mean age at the time of operation was 68.4 years [range 65 to 78 years]. Twelve patients underwent ALIF with percutaneous pedicle screw fixation. Seven patients underwent ALIF followed by posterior decompression and pedicle screw fixation. The postoperative complication rate was 10.5% [wound dehiscence in 1 patient and incisional hernia in 1 patient]. There was no postoperative major morbidity or mortality. At a mean follow-up duration of 30.7 months [range 25 to 35 months], 93.3% [14/15] of the patients showed excellent or good outcomes in terms of Macnab criteria. The mean VAS scores of back pain and leg pain significantly decreased after surgery. Conclusion : ALIF with pedicle screw fixation yielded favorable results for elderly isthmic spondylolisthesis in selected cases.

A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System (척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구)

  • Kim, Sung-Min;Yang, In-Chul;Kang, Ho-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.

Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis (Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석)

  • Ahn, Y.H.;Chen, Wen-Ming;Jung, D.Y.;Park, K.W.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

Biomechanical Stability Evaluation of Anterior/posterior Spinal Fusion for Burst Fracture (척추 파열 골절 치료를 위한 전.후방 척추고정술의 생체역학적 안정성 평가)

  • Park W.M.;Kim Y.H.;Park Y.S.;Oh T.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.187-188
    • /
    • 2006
  • A 3-D finite element model of human thoracolumbar spine (T12-L2) was reconstructed from CT images. Various anterior and posterior instrumentation techniques were performed with long cage after corpectomy. Six loading cases were applied up to 10 Nm, espectively. The rotations of T12 with respect to L2 were measured and the stiffnesses were calculated as the applied forces divided by the segmental rotations. The posterior fixation technique increased the stiffness of the spine the most. The addition of anterior rod from 1 to 2 increased the stiffness significantly without posterior fixation, but no effect was found with posterior fixation. We found that different fixation techniques changed the stiffness of the spine.

  • PDF

Posterior Atlantoaxial Fixation with a Combination of Pedicle Screws and a Laminar Screw in the Axis for a Unilateral High-riding Vertebral Artery

  • Kim, Sei-Yoon;Jang, Jee-Soo;Lee, Sang-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.2
    • /
    • pp.141-144
    • /
    • 2007
  • A vertebral arte [VA] injury presents a difficult problem in atlantoaxial fixation. Recent technical reports described posterior C2 fixation using bilateral, crossing C2 laminar screws. The translaminar screw technique has the advantages of producing little risk of VA injury and the unconstrained screw placement. In addition, biomechanical studies have demonstrated the potential of the translaminar screw technique to provide a firmer construct that is equivalent to methods currently used. We report the successful treatment of C1-2 instability with a left-side high-riding VA. Because of the potential risk of VA injury, we performed a posterior C1-2 fixation with a combination of pedicle screws and a laminar screw in C2. We first placed bilateral C1 lateral mass screws and a right-side C2 pedicle screw. However, placement of the left- side C2 pedicle screw was technically difficult due to a narrow isthmus and pedicle. A laminar screw was inserted instead and authors believe that this posterior C1-C2 fixation with a combination of pedicle screws and a laminar screw in C2 can be a useful alternative technique for the treatment of C1-C2 instability in the presence of a unilateral high-riding VA.

Biomechanical Evaluation of SMA Dynamic Stabilization for Spinal fusion (척추고정용 형상기억합금 동적안정기기의 생체역학적 성능 평가)

  • Kim Y.H.;Park W.M.;Kim K.;Park H.K.;Joo J.W.;Park K.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.517-518
    • /
    • 2006
  • In this study, a commercial fixation device, BioFlex, which was designed with shape memory alloy(SMA) for dynamic stabilization of spine was biomechanically evaluated. The finite element model of intact lumbar spine from L1 to S was developed using CT images. Also, low FE models of 2-level(L4-L5-S) and 3-level(L3-L4-L5-S) posteriori fixation using titanium(Ti) rod and BioFlex(SMA) rod. The rotations of bone segments in the intact model and four models were predicted. Although the rotations of the BioFlex fixation model were smaller than those of the intact model, they were relatively larger than those of Ti fixation. The present can be applied for not only evaluation of the stability of interbody fixator, but also development of new implant.

  • PDF

Load Sharing Mechanism Across Graft-Bone Interface in Static Cervical Locking Plate Fixation

  • Han, In-Ho;Kuh, Sung-Uk;Chin, Dong-Kyu;Jin, Byung-Ho;Cho, Yang-Eun;Kim, Keun-Su
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Objective : This study is a retrospective clinical study over more than 4 years of follow up to understand the mechanism of load sharing across the graft-bone interface in the static locking plate (SLP) fixation compared with non-locking plate (NLP). Methods : Orion locking plates and Top non-locking plates were used for SLP fixation in 29 patients and NLP fixation in 24 patients, respectively. Successful interbody fusion was estimated by dynamic X-ray films. The checking parameters were as follows : screw angle (SA) between upper and lower screw, anterior and posterior height of fusion segment between upper and lower endplate (AH & PH), and upper and lower distance from vertebral endplate to the end of plate (UD & LD). Each follow-up value of AH and PH were compared to initial values. Contributions of upper and lower collapse to whole segment collapse were estimated. Results : Successful intervertebral bone fusion rate was 100% in the SLP group and 92% in the NLP group. The follow-up mean value of SA in SLP group was not significantly changed compared with initial value, but follow-up mean value of SA in NLP group decreased more than those in SLP group (p=0.0067). Statistical analysis did not show a significant difference in the change in AH and PH between SLP and NLP groups (p>0.05). Follow-up AH of NLP group showed more collapse than PH of same group (p=0.04). The upper portion of the vertebral body collapsed more than the lower portion in the SLP fixation (p=0.00058). Conclusion : The fused segments with SLP had successful bone fusion without change in initial screw angle, which was not observed in NLP fixation. It suggests that there was enough load sharing across bone-graft interface in SLP fixation.

Free Hand Insertion Technique of S2 Sacral Alar-Iliac Screws for Spino-Pelvic Fixation : Technical Note, Acadaveric Study

  • Park, Jong-Hwa;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.578-581
    • /
    • 2015
  • A rigid spino-pelvic fixation to anchor long constructs is crucial to maintain the stability of long fusion in spinal deformity surgery. Besides obtaining immediate stability and proper biomechanical strength of constructs, the S2 alar-iliac (S2AI) screws have some more advantages. Four Korean fresh-frozen human cadavers were procured. Free hand S2AI screw placement is performed using anatomic landmarks. The starting point of the S2AI screw is located at the midpoint between the S1 and S2 foramen and 2 mm medial to the lateral sacral crest. Gearshift was advanced from the desired starting point toward the sacro-iliac joint directing approximately $20^{\circ}$ angulation caudally in sagittal plane and $30^{\circ}$ angulation horizontally in the coronal plane connecting the posterior superior iliac spine (PSIS). We made a S2AI screw trajectory through the cancellous channel using the gearshift. We measured caudal angle in the sagittal plane and horizontal angle in the coronal plane. A total of eight S2AI screws were inserted in four cadavers. All screws inserted into the iliac crest were evaluated by C-arm and naked eye examination by two spine surgeons. Among 8 S2AI screws, all screws were accurately placed (100%). The average caudal angle in the sagittal plane was $17.3{\pm}5.4^{\circ}$. The average horizontal angle in the coronal plane connecting the PSIS was $32.0{\pm}1.8^{\circ}$. The placement of S2AI screws using the free hand technique without any radiographic guidance appears to an acceptable method of insertion without more radiation or time consuming.

Lumbo-iliac Fixation Using Modified Galveston Technique in a Patient with Metastatic Sacral Tumor

  • Shin, Dong-Ah;Kim, Hyo-Jun;Shin, Dong-Gyu;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.61-64
    • /
    • 2007
  • Lumbo-sacral junction is a transition lone between the mobile lumbar spine and immobile pelvis. Lumbosacral junction has been considered to be the most troublesome portion of the spine to be fused because of the difference in anatomical and biomechanical factors between spine and pelvis. A metastatic sacral tumor in a 57-year-old man was resected, followed by unilateral lumbo-iliac fixation across lumbosacral junction using modified Galveston technique. Rigid fixation was successfully achieved. Detailed anatomy and surgical techniques are presented.