• Title/Summary/Keyword: Spindle torque

Search Result 95, Processing Time 0.026 seconds

Cutting Torque Control in Drilling Part 2 : Drilling Torque Control Using Spindle Motor Current and Its Effect on Drill Flank Wear (드릴 공정시 절삭 토크 제어 제 2 편 : 주축 모터 전류를 이용한 드릴링 토크의 제어와 드릴 플랭크 마모에 대한 영향)

  • O, Yeong-Tak;Kim, Gi-Dae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.107-115
    • /
    • 2001
  • Drilling torque was measured indirectly using the spindle motor current and controlled in real time through feedrate manipulation in a machining center. The PID controller designed in the previous paper was applied to drilling torque control. A series of cutting experiments were performed for various cutting conditions. Experimental results showed that the drilling torque was well regulated at a given reference level by feedrate manipulation in all cutting conditions. The increase in the cutting torque and temperature according to the increase in machining depth was suppressed and the risk of the drill failure and the drill flank wear were reduced remarkably through cutting torque control. Moreover, the suggested cutting torque control system doesn\`t disturb the cutting process and is practical for industrial environment. Therefore, the proposed culling torque control system will contribute to productivity improvement in drilling process.

  • PDF

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling (PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구)

  • Kim Sang-Jin;Bae Myung-Il;Kim Hyeung-Chul;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.

Speed Sensorless Torque Monitoring On CNC Lathe Using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

Structural Optimization of Ultra Slim Spindle Motor for Mobile Storage (Mobile Storage용 초박형 Spindle Motor의 구조적 최적화)

  • Sung, Bu-Hyun;Kim, Soo-Hyung;Hong, Soon-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.641-645
    • /
    • 2001
  • Storage drives for mobile devices, such as laptop computers or PDAs, are changing now. The data density of storage drives is becoming higher and sizes of those are becoming smaller and thinner. Spindle motors for rotating disk are also becoming smaller and thinner. But, large torque is required to reduce seek time. In this research, inner rotor type spindle motor suitable for thin thickness has been developed. Rotor and stator are optimized structurally for large torque performance with small size. Especially, high vibration and shock performances, which are essential to mobile devices, are analyzed in detail.

  • PDF

Action of Synchronous error between Z axis and spindle axis on rigid tapping (Rigid 탭핑에서의 Z축과 주축간 동기오차의 거동)

  • 이돈진;강지웅;김용규;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.184-187
    • /
    • 2000
  • This paper describes action of synchronous error between z axis and spindle axis on rigid tapping. Because rigid tapping cuts the threads synchronizing the movement of z axis to spindle rotation, synchronous error between z axis and spindle is very important. Increase of synchronous error degrades the accuracy of thread and crushes the tap in worst case. So we developed the realtime measurement system of synchronous error in order to know the action of synchronous error on rigid tapping. In result, we have known that synchronous error was increased according to rise of spindle speed and z axis speed. And because the cutting torque(M3-30Ncm∼M10-300Ncm) on rigid tapping are less than maximum motor torque(3500Ncm), it specially doesn't affect the synchronous error. The most important parameter which has affected the increase of synchronous error was acceleration/deceleration time. On worst case, spindle motor was tripped because of the excess of synchronous error. Because the acceleration/deceleration time ocuupies the most of the total cutting time, in order to move on the high speed rigid tapping, the acceleration/deceleration time of spindle must be remarkably reduced.

  • PDF

Inertia Identification Algorithm for Spindle Motor of Machine Tool (고성능 절삭 추력을 위한 스핀들 전동기의 최대토크운전 분석)

  • Kwon, Wan-Sung;Kim, Young-Sik;Cao, Qinbo;Choi, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.37-39
    • /
    • 2007
  • This paper compared with field weakening operation methods for the spindle motor of machine tool in which high speed drive is required. The maximum torque field weakening algorithm ensures the full utilization of the output torque capability of the machine over 1/Wr method. From simulation, the validity of the Max_Te method is confirmed. It is verified that the Max-Te algorithm provided the improved torque capability over 1/Wr method. So, It is applicable to provide high performance control involving fast acceleration and precise speed control for the adjustable speed drive system of spindle.

  • PDF

Analysis of Cutting Characteristics in High Speed Tapping (고속 탭핑에서의 절삭 특성 해석)

  • 강지웅;김용규;이돈진;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.243-246
    • /
    • 2000
  • Productivty of tapping has been increasing through the tcchnological advances in synchronization between spindle rotation and feed motion even in the high spindle speed. However, not much researches have been conducted about tapping process because its complicate cutting mechanism. In order ta investigate the characteristics of the tapping process, this paper concentrates on the analysis of curting torque behavior during one cycle of lapping. As one completc thread is performed through the whole chamfer ercuttlng, cutting torque increases highly in chamfer cutting, but smaothly in full thread cutting Functioning of the threads guide. Cutting torque in backward cutting is smaller than in Sorwerd cutting due to only friction farce in against between the tool and workpiece. And torque behavior of a periodic Sine ripple-mark was identified during one revolution of a tap.

  • PDF

Study on the Frictional Torque in the Angular Contact Ball Bearing for Machine Tool Spindle by Empirical Formula (실험식을 이용한 공작기계 주축용 앵귤러 콘택트 볼 베어링의 마찰토크에 관한 연구)

  • Kim, Kang Seok;Hwang, Jooho;Lee, Deug Woo;Lee, Sang Min;Lee, Seung Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.149-157
    • /
    • 2015
  • Ball and roller bearings are commonly used machine elements for supporting rotating motion about shafts in simple devices including bicycles, in-line skates, and electric motors, as well as in complex machines. Heat is generated by the friction in the bearings, which causes the temperature inside the bearing to increase. If the heat is not appropriately removed from the bearing, elevated temperatures may give rise to premature failure. It is, therefore, important to be able to calculate the temperature in the bearings due to friction.Here, we describe a method to estimate the frictional torque in bearings using an empirical formula developed using a method based on bearing analysis tool and the measured frictional torque in a spindle system. Thermal analysis of the spindle system including the bearings was achieved using the finite element method (FEM), and the bearing temperature was compared with measured data to verify the empirical formula.

Study of Cutting Characteristics in High Speed Synchronized Tapping (고속 동기 탭핑에서의 절삭 특성에 관한 연구)

  • 정용수;이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.304-307
    • /
    • 2002
  • High speed machining was accomplished. through the technological advances which covers the whole field of mechanical industry. But tapping have many troubles because of its complicate cutting mechanism, for example. tool damage, chip elimination and synchronization between spindle rotation and feed motion. But High speed tapping is so important that it marches in step with the flow of the times and make improvement in the productivity. In this paper we analyze mechanism of high speed synchronized tapping with the signal of tapping torque and spindle speed obtained through the newly developed high speed tapping machine(NTT-30B). We made an experiment with this machine on condition of various speed from 1000rpm to 10000rpm. As one complete thread is performed through the whole chamfer cutting, cutting torque increases highly in chamfer cutting, but smoothly in full thread cutting functioning of the threads guide. And the size of cutting torque according to spindle speed(rpm) was not enough of a difference to be conspicuous.

  • PDF