• 제목/요약/키워드: Spindle torque

검색결과 95건 처리시간 0.024초

공작기계 주축 유도전동기의 속도 센서리스 토크 감시 (Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool)

  • 홍익준;권원태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

Estimation of the Cutting Torque Without a Speed Sensor During CNC Turning

  • Kwon, Won-Tae;Hong, Ik-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2205-2212
    • /
    • 2005
  • In this paper, the cutting torque of a CNC machine tool during machining is monitored through the internet. To estimate the cutting torque precisely, the spindle driving system is divided into two parts: electrical induction motor part and mechanical part. A magnetized current is calculated from the measured three-phase stator currents and used for the total torque estimation generated by a spindle motor. Slip angular velocity is calculated from the magnetized current directly, which gets rid of the necessity of a spindle speed sensor. Since the frictional torque changes according to the cutting torque and the spindle rotational speed, an experiment is adopted to obtain the frictional torque as a function of the cutting torque and the spindle rotation speed. Then the cutting torque can be calculated by solving a $2^{nd}$ order difference equation at a given cutting condition. A graphical programming method is used to implement the torque monitoring system developed in this study to the computer and at the same time monitor the torque of the spindle motor in real time through the internet. The cutting torque of the CNC lathe is estimated well within an about $3\%$ error range in average in various cutting conditions.

CNC 선반가공 중 속도 센서리스 토크 감시 (Speed Sensorless Torque Monitoring During Machining on CNC Lathe)

  • 홍익준;권원태
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.222-229
    • /
    • 2004
  • In this paper, the torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part, the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental equations are drawn for damping coefficient and Coulomb friction as a function of spindle speed. Incremental frictional torque Is also obtained as a function of both cutting torque and spindle speed. Graphical programming is used to implement the suggested algorithm to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is estimated well in about average 3% error range under various cutting conditions.

주축 모터 동력을 이용한 절삭력 예측 (Cutting Force Estimation Using Spindle Motor Power)

  • 최영준;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF

인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시 (Speed-Sensorless Torque Monitoring on CNC Lathe using Internet)

  • 홍익준;권원태
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.99-105
    • /
    • 2004
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel monitors it. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using interne is suggested. To estimate the torque accurately, spindle driving system of an CNC lathe is divide into two parts, induction motor part and mechanical part attached to the induction motor spindle. Magnetizing current is calculated from the measured 3 phase currents without speed sensor used to estimate the torque generated by an induction motor. In mechanical part of the system, some of the torque is used to overcome friction and remaining torque is used to overcome cutting force. An equation to estimate friction torque is drawn as a function of cutting torque and rotation speed. Graphical programming is used to implement the suggested algorithm. to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. Torque of the spindle induction motor is well monitored on the client computers in about 3% error range under various cutting conditions.

절삭공정 모니터링을 위한 이송모터의 주축모터 전류 (Feed and spindle motor currents as monitoring parameters in cutting process)

  • 오영탁;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.555-559
    • /
    • 2001
  • Feed and spindle motor currents are used toi monitor the cutting process practically. The sensitivity of spindle drive system is lower than that of feed drive system, but the cutting torque is represented well by the spindle motor current. During multi-axis cutting, it is difficult to calculate the resultant cutting force using feed motor currents, because each feed force is reflected by each axis feed motor current with different time delay. It is also difficult to compensate the frictional torque using the feed motor current, because the magnitude of the frictional torque is dependent of the feedrate, table position, and cutting direction. On the other hand, cutting torque can be estimated well using spindle motor current which is independent of the cutting direction.

  • PDF

밀링공정에서 주축모터전류를 이용한 절입비 추정 (Immersion Ration Estimation Using Spindle Motor Current during Milling)

  • 조규진;권원태;조동우;주종남
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.222-229
    • /
    • 1999
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ration using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to cutting torque acting on a single tooth at the swept angle of cut and can be acquired form cutting torque signals. Average cutting torque per revolution can also be calculate form cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current.

  • PDF

정면밀링공정중 추축모터전류를 이용한 절입비의 실시간 추정 (In-process Immersion Ratio Estimation Using Spindle Motor Current during Face Milling)

  • 조규진;오영탁;권원태;주종남
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.57-64
    • /
    • 2000
  • In order to regulate cutting torque in milling, monitoring system should be set to a certain threshold. Radial immersion ratio is an important factor to determine the threshold and should be estimated in process for automatic regulation. In this paper, on-line estimation of the radial immersion ratio using spindle motor current in face milling is presented. When a tooth finishes sweeping, a sudden drop of cutting torque occurs. This torque drop is equal to the cutting torque acting on a single tooth at the swept angle of cut and can be acquired from cutting torque signals. Average cutting torque per revolution can also be calculated from cutting torque signals. The ratio of cutting torque acting on a single tooth at the swept angle of cut to the average cutting torque per revolution is a function of the swept angle of cut and the number of teeth. Using the magnitude of this ratio, the radial immersion ratio is estimated. Identical algorithm is adopted to estimate the immersion ratio based on the spindle motor current measurement. The experiments performed under different cutting conditions show that the radial immersion ratio can be estimated within 10% error range by the proposed method using spindle motor current. Varying immersion ratio is also estimated well using the presented algorithm.

  • PDF

Telemeter방식 torque 센서 개발 (A development of torque sensor using telemeter techniques)

  • 김수광;김태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1204-1208
    • /
    • 1991
  • This paper describes the 2-channel telemeter system using AM(Amplitude Modulation) - FM (Frequency Modulation) techniques suitable for measurement of spindle torque by strain gage. In order to evaluate the developed system, the model tests were performed for test specimens. The developed system was installed on the plate mill and it was possible to measure and analyze the torque signal of spindle,

  • PDF

Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성 (Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel)

  • 하재훈;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF