• Title/Summary/Keyword: Spindle motor power

Search Result 44, Processing Time 0.019 seconds

Numerical Prediction of Flow Field in a Hard Disk Drive (하드 디스크 드라이브 내부의 유동장에 관한 수치적 연구)

  • Lee, Jae-Heon;Back, Y.R.;Kim, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.3
    • /
    • pp.206-214
    • /
    • 1991
  • Flow field in a hard disk drive has been predicted numerically. Theoretical model was constructed based on a commercially available hard disk drive with 40 Mega byte capacity. Since the gap between disk tip and shroud is not homogeneous in real hard disk drive, three kinds of gap size have been tested as computational model. The discussion has been made on the circumferential velocity, radial velocity, and pressure fields. As a result, the average shear stress on the disk surface was reduced as the gap size decreased. This means that the shroud should be designed compactly to reduce power consumption of the spindle motor.

  • PDF

A Study on Vibration Detection Method of Disc by Differential Amplifying Optical Power in Optical Disc Media (광 디스크 장치에서 광량 차동증폭에 의한 디스크 진동 검출 방안에 관한 연구)

  • 김진선;곽경섭
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.215-221
    • /
    • 2002
  • In high speed optical disc devices, the vibration caused by unbalanced displacement leads the focus and tracking servo systems to be unstable, and increases the data search time. In this paper, we propose a new scheme to solve the unbalanced displacement problem. The proposed method detects the unbalanced rate by differential amplifying optical power received at photo diode and converts it into an electrical signal. controlling the speed of spindle motor, according to the detected unbalanced rate, makes it possible to improve the performance of tracking and data searching tasks. Also, we analyze the dynamic characteristics of focus and tracking servo systems in high speed mode and provide the firmware and hardware architecture that the proposed method can be installed as an add-on- module in the existing system.

  • PDF

Milling tool wear forecast based on the partial least-squares regression analysis

  • Xu, Chuangwen;Chen, Hualing
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • Power signals resulting from spindle and feed motor, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the tool wear. The partial least-squares regression (PLSR) method has been established as the tool wear analysis method for this purpose. Firstly, the results of the application of widely used techniques are given and their limitations of prior methods are delineated. Secondly, the application of PLSR is proposed. The singular value theory is used to noise reduction. According to grey relational degree analysis, sample variable is filtered as part sample variable and all sample variables as independent variables for modelling, and the tool wear is taken as dependent variable, thus PLSR model is built up through adapting to several experimental data of tool wear in different milling process. Finally, the prediction value of tool wear is compare with actual value, in order to test whether the model of the tool wear can adopt to new measuring data on the independent variable. In the new different cutting process, milling tool wear was predicted by the methods of PLSR and MLR (Multivariate Linear Regression) as well as BPNN (BP Neural Network) at the same time. Experimental results show that the methods can meet the needs of the engineering and PLSR is more suitable for monitoring tool wear.

SSD-based RAID-6 System Architecture for Reliability and Performance Enhancement (신뢰성 향상과 성능개선을 위해 다양한 Erasure 코드를 적용한 SSD 기반 RAID-6 시스템 구조)

  • Song, Jae-Seok;Huh, Joon-Moo;Yang, Yu-Seok;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.47-56
    • /
    • 2010
  • HDD-based RAIDs have been used in high-capacity storage systems for traditional data server. However, their data reliability are relatively low and they consume lots of power since hard disk drive is weak on shock and its power consumption is high due to frequent spindle motor operation. Therefore, this paper presents new SSD based RAID system architecture using various erasure codes. The proposed methode applys Reed-Solomon, EVENODD, and Liberation coding schemes onto file system level and device driver level, respectively. Besides, it uses data allocation method to minimize the side effect of reducing the lifespan of SSD. Detail experimental results show that Liberation code increase wear-leveling rates of SSD based RAID-6 more than other codes. The SSD based RAID system applying erasure codes at the device driver level shows better performance than that at the file system level. I/O performance of RAID-6 system using SSD is 4.5%~8.5% higher than that of using HDD and the power consumption of the RAID system using SSD is 18%~40% less than that of using HDD.