• 제목/요약/키워드: Spindle System

검색결과 606건 처리시간 0.025초

3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구 (A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system)

  • 오승혁;이상훈;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF

50,000rpm급 초고속 주축계의 정적/동적/열적 특성 해석 (Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm)

  • 김석일;조재완;이원재;이용희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.494-499
    • /
    • 2003
  • This paper concerns the static, dynamic and thermal characteristics analysis of a high-speed spindle system for horizontal machining centers with 45mm x50,000rpm. The spindle system is designed based on the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The structural and thermal analysis models of spindle system are constructed by the finite element method. The static and dynamic characteristics are estimated based on the static deformation, modal parameter, mode shape and frequency response function, and the thermal characteristics are estimated based on the temperature rise, temperature distribution and thermal deformation. The analysis results illustrate that the designed spindle system has excellent structural and thermal stabilities

  • PDF

고속 스핀들용 공기 베어링의 열 특성에 관한 연구 (A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle)

  • 이득우;이종렬;김보언;안지훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

성형연삭기의 주축부 구조해석과 최적설계에 관한 연구 (A Study on the Structure Analysis and Optimum Design of Surface Grinding Machine Spindle System)

  • 한정빈;황규원;정명진;박동삼
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.83-94
    • /
    • 1986
  • Grinding machine, one of the precision machine tool, requires high accuracy in spindle system. But, recent Inspection and Test reports by KIMM shows high inferio¬rity ratio in home-made grinding machines and points out that this is mainly due to the lack of design ability and assembling technique of spindle system. In this paper, therefore, static stiffness, dynamic characteristics, thermal defor¬mation and error motion of spindle system were studied. With these results, we presented the general data to design and assemble the spindle system. Test of spindle system modified by this study showed that several factors affecting machining accuracy were improved largely.

  • PDF

영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High Speed Spindle using Influence Coefficient Method)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

온도 변화에 따른 HDD 회전축계 동특성 해석 (Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation)

  • 김동균;장건희;한재혁;김철순
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.805-812
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed for the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

온도 변화에 따른 HDD 회전축계 동특성 해석 (Analysis of Dynamic Characteristics of a HDD Spindle System Supported by Ball Bearing Due to Temperature Variation)

  • 김동균;장건희;한재혁;김철순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.578-584
    • /
    • 2003
  • This paper presents a method to investigate the characteristics of a ball bearing and the dynamics of a HDD spindle system due to temperature variation. Finite element model is developed fer the rotating and stationary parts of a HDD spindle system separately to determine their thermal deformations by using ANSYS, a finite element program. Then, the relative position of the rotating part with respect to the stationary part is determined by solving the equilibrium equation of the contact force between upper and lower ball bearings. The validity of the proposed method is verified by comparing the theoretical natural frequencies of a HDD spindle system with the experimental ones before and after temperature variation. It shows that the elevated temperature results in the increase of contact angle and the decrease of bearing deformation, contact force and bearing stiffness, which result in the decrease of the natural frequencies of a HDD spindle system.

  • PDF

nCode를 이용한 플래너 밀러 주축계 구조물의 피로수명에 관한 연구 (A Study on the Fatigue Life of Planer Miller Spindle System Using nCode)

  • 김재실;박필거;이성원
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1091-1095
    • /
    • 2022
  • Dynamic stability of the main spindle system shall be ensured when operating the planer miller for remanufacturing the planer miller. This paper explains the analysis process that determines the stability of the planer miller spindle system in the design stage using ANSYS, an analysis program. First, the dynamic stability of the main spindle system is verified through risk speed analysis in the rated RPM range of the planer miller through ANSYS Modal Analysis, and second, the stability and durability of the main spindle system are verified through ANSYS nCode Analysis.

공작기계 주축의 요소별 정동적 강성기여율 및 개선에 관한 연구 (The Contribution of Spindle Parts to Static, Dynamic Stiffness and Design Improvement)

  • 이찬홍;박천홍;이후상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.985-988
    • /
    • 2002
  • The Spindle-]fearing System is very important unit for geometrical accuracy in machine tools. To improve effectively the weak point of spindle system, it is necessary that the contribution ratio of spindle core parts to static and dynamic stiffness is clarified. In this paper, static contribution ratio of core parts is calculated by overlapping static deformation of basic spindle design with one flexible parts. The dynamic contribution ratio for natural frequency and dynamic deformation at spindle end is obtained by calculating correlation between original and basic spindle deformation, by curve fitting with regressive method. It is proved the validity of estimation result is correct.

  • PDF

유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석 (Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis)

  • 정명수;장건희
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.