• Title/Summary/Keyword: Spindle System

Search Result 606, Processing Time 0.028 seconds

Development of System for Measurement and Evaluation for Machine tool Spindle (공작기계 주축 스핀들 종합오차 측정 및 평가기술개발)

  • 신현장;이석원;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1005-1008
    • /
    • 1995
  • The spindle is a very important part of machine tool. The evaluation of spindle motion is required for improving the performance of machine tools. The evaluation tools have been developed for precison spindle by the reversal technique, and 3D error map motion of spindle is proposed. This technique makes us understand the total movement of spindle more easily. The proposed technique has been successfully applied to practical machine tools, giving high potentials for the spindle performance measurement.

  • PDF

Dynamic Characteristics Analysis of a Machine-Tool Spindle System (공작기계 주축계의 진동특성해석에 관한 연구)

  • Kim, Seok-Il;Gwak, Byeong-Man;Lee, Hu-Sang;Jeong, Jae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

Vibration Suppression of the HDD Spindle-Disk System Using Piezoelectric Bimorph (압전 바이모프를 이용한 HDD 스핀들-디스크 시스템의 진동저감)

  • Lim, S.C.;Park, J.S.;Choi, S.B.;Park, Y.P.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents the feasibility of the piezoelectric shunt damping for vibration suppression of the highly rotating HDD disk-spindle system. A target vibration mode which restricts the recording density increment of the drive is determined by modal analysis of the drive, and a piezoelectric bimorph is designed to suppress the vibration level of the target mode. After deriving the generalized two-dimensional electromechanical coupling coefficient of the shunted spindle-disk system, the damping performance of the system is predicted by simulating the displacement transmissibility on the target mode. After manufacturing the proposed drive, the vibration suppression performance of the proposed methodology is experimentally evaluated in frequency domain.

  • PDF

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF

A Study on Cutting Force Measurement Using a Cylindrical Capacitive Spindle Sensor (주축 변위 센서를 이용한 절삭력 측정에 관한 연구)

  • 김일해;장동영;한동철
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2002
  • A cylindrical capacitance-type spindle displacement sensor was developed and its effectiveness as a system to monitor cutting forces during hard turning was tested in this research. The sensor was installed between the face of spindle cover and the chucking element and measured pure radial motion of the spindle under the condition with presence of roundness error at measured surface. To prove the effectiveness of the developed system hard aiming tests using ceramic inserts and tool steel as workpiece were conducted. The workpiece was hardened up to 65 Rc. The variations of pure radial motion of the spindle ware measured during the cutting tests. The signals from the sensor showed the same pattern of cutting force variations from the tool dynamometer due to the progress of tool wear. As the flank wear of the ceramic tool increased both static component of cutting forces and the amount of center shift of spindle orbit increased, Results from the research showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to monitor cutting conditions and tool performance in the un-manned machining center.

Estimation of the Cutting Torque Without a Speed Sensor During CNC Turning

  • Kwon, Won-Tae;Hong, Ik-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2205-2212
    • /
    • 2005
  • In this paper, the cutting torque of a CNC machine tool during machining is monitored through the internet. To estimate the cutting torque precisely, the spindle driving system is divided into two parts: electrical induction motor part and mechanical part. A magnetized current is calculated from the measured three-phase stator currents and used for the total torque estimation generated by a spindle motor. Slip angular velocity is calculated from the magnetized current directly, which gets rid of the necessity of a spindle speed sensor. Since the frictional torque changes according to the cutting torque and the spindle rotational speed, an experiment is adopted to obtain the frictional torque as a function of the cutting torque and the spindle rotation speed. Then the cutting torque can be calculated by solving a $2^{nd}$ order difference equation at a given cutting condition. A graphical programming method is used to implement the torque monitoring system developed in this study to the computer and at the same time monitor the torque of the spindle motor in real time through the internet. The cutting torque of the CNC lathe is estimated well within an about $3\%$ error range in average in various cutting conditions.

Automation of One-Dimensional Finite Element Analysis of a Direct-Connection Spindle System of Machine Tools Using ANSYS (ANSYS를 활용한 공작기계 직결주축 시스템의 1차원 유한요소해석 자동화)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • In this study, an analytical model was developed for one-dimensional finite element analysis (1D FEA) of a spindle system of machine tools and then implemented to automate the FEA as a tool. FEA, with its vibration characteristics such as natural frequencies and modes, was performed using the universal FEA software ANSYS. VBA of EXCEL was used to provide the programming environment for its implementation. This enabled graphic user interfaces (GUIs) to be developed to allow interactions of users with the tool and, in addition, an EXCEL spreadsheet to be linked with the tool for data arrangement. The language of ANSYS was used to develop a code to perform the FEA. It generates an analytical model of the spindle system based on the information at the GUIs and subsequently performs the FEA based on the model. Automation helps identify the near-optimal design of the spindle system with minimum time and efforts.

Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD (3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구)

  • Oh, S.H.;Lee, S.H.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.

Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance (가공 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF

A study on dynamic behavior of inner parts with non-operational shock in hard disk drive (하드 디스크 드라이브 비 동작 충격 시에 내부 파트들의 동 특성에 대한 연구)

  • Choi, Yong-Ho;Choi, Jonghak;Lim, Gun-Yeop;Seo, Junho;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.32-35
    • /
    • 2013
  • Nowadays, function related to anti-vibration and anti-shock of storage devices is required because of portability. Therefore, many hard disk drive (HDD) studies about external shock and vibration have been performed. Especially, many studies are performed with non-operational shock. Most studies have used the fixed condition between spindle system and base when they wanted to analyze dynamic behavior of inner parts in simulation. But spindle system has actually stiffness and damping coefficient. Maybe difference of value would be happened between fixed condition and spring condition. So, we measured FRF of spindle system to know stiffness and damping coefficient in HDD. And we studied on dynamic behavior of inner parts by using calculated stiffness and damping coefficient. As a result, we confirmed the difference as boundary condition of spindle system.