• Title/Summary/Keyword: Spindle Accuracy

Search Result 201, Processing Time 0.023 seconds

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF

Effect of Preload on Running Accuracy of High Speed Spindle (고속 주축에 있어서의 예압력 변화가 회전정도에 미치는 영향)

  • 송창규;신영재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • The rotational performance off machine tool spindle has a direct influence upon the surface finish of the finished workpiece. This running accuracy of the spindle is improved by increasing preload on the bearings, while it results in higher temperature rise and larger thermal deformation. Therefore, finding the optimal preload condition for high speed spindle is very important factors in spindle motion. in spindle motion. In this study, the effect of the preload on the roundness accuracy has been examined at the different cutting conditions. Experiments were carried out to investigate the effects of the bearing preload on the running accuracy of high speed spindle which was supported by two angular contact bearings.

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

Measuring of Rotational Accuracy of Lathe Spindle (선반 주축의 회전운동 정도 측정)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.43-48
    • /
    • 2007
  • It is important to measure the rotational accuracy of lathe spindle as it affects to the qualities of all machines machined by the lathe using in industries. The bad rotational accuracy of lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental apparatus for measuring of rotational accuracy by using eddy current type gap sensors AEC5706PS and sensors, s-06LN, data acquisition board DT9834(USB type) and software for data acquisition, DT Measure Foundry ver. 4.0.7 etc., error data acquired in the rotational accuracy test of lathe spindle are analysed in plots and statistical treatments.

An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing (외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

A New Approach Increasing the Rotational Accuracy of Ball- Bearing Spindle by Using Proper Bearing Positioning

  • Yegor. A.;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • In order to improve the quality of a spindle unit it is important to increase its rotational accuracy. The rotational accuracy of a spindle unit can be defined as the stability or immobility of its spindle axis while rotating. Spindle rotation in the rolling bearings causes the disturbing influence, which leads to the oscillation of a rotation axis. The purpose of this study is to investigate the oscillation sources and find a way to decrease the runout without additional expenses. The main source of oscillation is the interaction between rolling bodies and ring races. The first oscillation source was the out-of-shape imperfection of inner bearing ring. The mutual compensation of oscillation by proper rings orientation was proposed, which sometimes allow to decrease the radial runout of spindle rotation axis by approximate 40% down. Also the outer ring harmonics were explored as the second oscillation source. The analysis shows the dependency between the number of rolling bodies and the outer ring race harmonics. The conclusion on the orientation of bearing cages and the bearing rings was made, which makes possible to obtain the optimal variant of their mounting in the spindle unit when the rotational accuracy of the spindle is maximal, and the spindle runout considerably less.

A Study on the Thermal Behaviro of Machine Tool Spindle System (공작기계 주축계 열적거동에 관한 연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • According to the development of tool material and the improvement of machinability of cutting material like aluminium alloy, the higher spindle speed is needed. However, the higher speed causes the heat generation of bearings, the deformation of spindle unit parts, and the rotational accuracy of spindle to be worse. Therefore, it is essential to analyze and control the heat generation and the thermal behavior of spindle unit in order to have higher speed and better rotational accuracy. This paper shows the analogy between the analyzation of heat generation and thermal behavior of high speed spindle system by finite element method and the test results of actual temperature rise through running test, and shows the necessity of cooling the spindle and inner ring side of bearings for the thermal balance of high speed spindle system.

  • PDF

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

A Study on the Rotation Accuracy According to Unbalance Variation of High Precision Spindle Unit for Machine Tool (고정밀 회전체의 불평형 변동에 따른 회전정밀도 영향에 관한 연구)

  • Kim, Sang-Hwa;Kim, Byung-Ha;Jin, Yong-Gyoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-181
    • /
    • 2012
  • The spindle unit is a core part in high precision machine tool. Rotation accuracy of spindle unit is needed for high dignity cutting and improving the performance of machine tool. However, there are many factors to effect to rotational error motion(rotation accuracy). This study studied how rotational error motion is variation when unbalance amount is variation. Rotation accuracy of initial spindle unit is decided depending on parts and assembly such as bearing. When it is rotation, vibration and noise is appeared depending on volume of unbalance amount, so it works to decrease unbalance amount. The purpose of the study tests that unbalance amount how much effects to initial rotation condition. The result of the study shows that accuracy of parts and assembly is highly necessary to reach high rotation accuracy and unbalance amount hardly effects to initial rotation accuracy. However, it shorten spindle's life because vibration and noise is increasing by increasing unbalance amount and we can expect situation that rotation accuracy is falling by long time operation.

A Study on Roughness Characteristic about Rotational Accuracy Variation (스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.