• Title/Summary/Keyword: Spinal deformity surgery

Search Result 61, Processing Time 0.03 seconds

Spinal Deformity Surgery : It Becomes an Essential Part of Neurosurgery

  • Hyun, Seung-Jae;Jung, Jong-myung
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.661-668
    • /
    • 2018
  • Among the spinal disorders, the treatment approach for spinal deformities has been discussed least among department of neurosurgery. But nowadays, more and more neurosurgeons are interested in spinal deformities as well as complex spinal disorders and are doing not a few surgeries for these kinds of disease. Nevertheless, it is mandatory to understand the course of spinal deformity, principles of treatment, and surgical outcomes and complications. Understanding of the biology, biomechanics and metallurgy of the spine and instrumentation are also required for successful spinal deformity surgery. We need senior mentors and good surgical and neurophysiologic monitoring team. Knowledge of spinal deformity may be augmented with spine fellowships and surgical experience. Step by step training such as basic knowledge, orthopedic as well as neurosurgical disciplines and surgical skills would be mandatory. Neurosurgeons can have several advantages for spinal deformity surgeries. By high-level technical ability of the spinal cord handling to preserve neurological function and familiarity with microscopic surgery, better synergistic effect could be expected. A fundamental understanding of pediatric spinal deformity and growing spine should be needed for spinal deformity surgery.

Decision Making Algorithm for Adult Spinal Deformity Surgery

  • Kim, Yongjung J.;Hyun, Seung-Jae;Cheh, Gene;Cho, Samuel K.;Rhim, Seung-Chul
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Adult spinal deformity (ASD) is one of the most challenging spinal disorders associated with broad range of clinical and radiological presentation. Correct selection of fusion levels in surgical planning for the management of adult spinal deformity is a complex task. Several classification systems and algorithms exist to assist surgeons in determining the appropriate levels to be instrumented. In this study, we describe our new simple decision making algorithm and selection of fusion level for ASD surgery in terms of adult idiopathic idiopathic scoliosis vs. degenerative scoliosis.

Restoration of Sagittal Balance in Spinal Deformity Surgery

  • Makhni, Melvin C.;Shillingford, Jamal N.;Laratta, Joseph L.;Hyun, Seung-Jae;Kim, Yongjung J.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.2
    • /
    • pp.167-179
    • /
    • 2018
  • The prevalence of patients with adult spinal deformity (ASD) has been reported as high as 68%. ASD often leads to significant pain and disability. Recent emphasis has been placed on sagittal plane balance and restoring normal sagittal alignment with regards to the three dimensional deformity of ASD. Optimal sagittal alignment has been known to increase spinal biomechanical efficiency, reduce energy expenditure by maintaining a stable posture with improved load absorption, influence better bony union, and help to decelerate adjacent segment deterioration. Increasingly positive sagittal imbalance has been shown to correlate with poor functional outcome and poor self-image along with poor psychological function. Compensatory mechanisms attempt to maintain sagittal balance through pelvic rotation, alterations in lumbar lordosis as well as knee and ankle flexion at the cost of increased energy expenditure. Restoring normal spinopelvic alignment is paramount to the treatment of complex spinal deformity with sagittal imbalance. Posterior osteotomies including posterior column osteotomies, pedicle subtraction osteotomies, and posterior vertebral column resection, as well anterior column support are well known to improve sagittal alignment. Understanding of whole spinal alignment and dynamics of spinopelvic alignment is essential to restore sagittal balance while minimizing the risk of developing sagittal decompensation after surgical intervention.

Effectiveness and Safety of Tranexamic Acid in Spinal Deformity Surgery

  • Choi, Ho Yong;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • Objective : Spinal deformity surgery has the potential risk of massive blood loss. To reduce surgical bleeding, the use of tranexamic acid (TXA) became popular in spinal surgery, recently. The purpose of this study was to determine the effectiveness of intra-operative TXA use to reduce surgical bleeding and transfusion requirements in spinal deformity surgery. Methods : A total of 132 consecutive patients undergoing multi-level posterior spinal segmental instrumented fusion (${\geq}5$ levels) were analyzed retrospectively. Primary outcome measures included intraoperative estimated blood loss (EBL), transfusion amount and rate of transfusion. Secondary outcome measures included postoperative transfusion amount, rate of transfusion, and complications associated with TXA or allogeneic blood transfusions. Results : The number of patients was 89 in TXA group and 43 in non-TXA group. There were no significant differences in demographic or surgical traits between the groups except hypertension. The EBL was significantly lower in TXA group than non-TXA group (841 vs. 1336 mL, p=0.002). TXA group also showed less intra-operative and postoperative transfusion requirements (544 vs. 812 mL, p=0.012; 193 vs. 359 mL, p=0.034). Based on multiple regression analysis, TXA use could reduce surgical bleeding by 371 mL (37 % of mean EBL). Complication rate was not different between the groups. Conclusion : TXA use can effectively reduce the amount of intra-operative bleeding and transfusion requirements in spinal deformity surgery. Future randomized controlled study could confirm the routine use of TXA in major spinal surgery.

Multiple Spinal Revision Surgery in a Patient with Parkinson's Disease

  • Malla, Hridayesh Pratap;Kim, Min Ki;Kim, Tae Sung;Jo, Dae Jean
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.6
    • /
    • pp.655-658
    • /
    • 2016
  • Parkinson's disease (PD) patients frequently have several spinal deformities leading to postural instabilities including camptocormia, myopathy-induced postural deformity, Pisa syndrome, and progressive degeneration, all of which adversely affect daily life activities. To improve these postural deformities and relieve the related neurologic symptoms, patients often undergo spinal instrumentation surgery. Due to progressive degenerative changes related to PD itself and other complicating factors, patients and surgeons are faced with instrument failure-related complications, which can ultimately result in multiple revision surgeries yielding various postoperative complications and morbidities. Here, we report a representative case of a 70-year-old PD patient with flat back syndrome who had undergone several revision surgeries, including anterior and posterior decompression and fusion for a lumbosacral spinal deformity. The patient ultimately benefitted from a relatively short segment fixation and corrective fusion surgery.

Systematic Review of Reciprocal Changes after Spinal Reconstruction Surgery : Do Not Miss the Forest for the Trees

  • Kim, Chang-Wook;Hyun, Seung-Jae;Kim, Ki-Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.843-852
    • /
    • 2021
  • The purpose of this review was to synthesize the research on global spinal alignment and reciprocal changes following cervical or thoracolumbar reconstruction surgery. We carried out a search of PubMed, EMBASE, and Cochrane Library for studies through May 2020, and ultimately included 11 articles. The optimal goal of a truly balanced spine is to maintain the head over the femoral heads. When spinal imbalance occurs, the human body reacts through various compensatory mechanisms to maintain the head over the pelvis and to retain a horizontal gaze. Historically, deformity correction has focused on correcting scoliosis and preventing scoliotic curve progression. Following substantial correction of a spinal deformity, reciprocal changes take place in the flexible segments proximal and distal to the area of correction. Restoration of lumbar lordosis following surgery to correct a thoracolumbar deformity induces reciprocal changes in T1 slope, cervical lordosis, pelvic shift, and lower extremity parameters. Patients with cervical kyphosis exhibit different patterns of reciprocal changes depending on whether they have head-balanced or trunk-balanced kyphosis. These reciprocal changes should be considered to in order to prevent secondary spine disorders. We emphasize the importance of evaluating the global spinal alignment to assess postoperative changes.

Narrative Review of Clinical Impact of Head-Hip Offset Following Adult Spinal Deformity Surgery

  • Sunho Kim;Seung-Jae Hyun;Jae-Koo Lee;Ki-Jeong Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.2
    • /
    • pp.137-145
    • /
    • 2024
  • In adult spinal deformity (ASD) surgery, mechanical failure (MF) has been a significant concern for spine surgeons as well as patients. Despite earnest endeavors to prevent MF, the absence of a definitive consensus persists, owing to the intricate interplay of multifarious factors associated with this complication. Previous approaches centered around global spinal alignment have yielded limited success in entirely forestalling MF. These methodologies, albeit valuable, exhibited limitations by neglecting to encompass global balance and compensatory mechanisms within their purview. In response to this concern, an in-depth comprehension of global balance and compensatory mechanisms emerges as imperative. In this discourse, the center of gravity and the gravity line are gaining attention in recent investigations pertaining to global balance. This narrative review aims to provide an overview of the global balance and a comprehensive understanding of related concepts and knowledge. Moreover, it delves into the clinical ramifications of the contemporary optimal correction paradigm to furnish an encompassing understanding of global balance and the current optimal correction strategies within the context of ASD surgery. By doing so, it endeavors to furnish spine surgeons with a guiding compass, enriching their decision-making process as they navigate the intricate terrain of ASD surgical interventions.

A Computed Tomography Analysis of the Success of Spinal Fusion Using Ultra-Low Dose (0.7 mg per Facet) of Recombinant Human Bone Morphogenetic Protein 2 in Multilevel Adult Degenerative Spinal Deformity Surgery

  • Liu, Gabriel;Tan, Jun Hao;Yang, Changwei;Ruiz, John;Wong, Hee-Kit
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1010-1016
    • /
    • 2018
  • Study Design: Retrospective cohort study. Purpose: To report on spinal fusion assessment using computed tomography (CT) after adult spinal deformity (ASD) surgery using ultra-low dose recombinant human bone morphogenetic protein 2 (RhBMP-2). Overview of Literature: The reported dose of RhBMP-2 needed for successful spinal posterolateral fusion in ASD ranges from 10 to 20 mg per spinal level. This study reports the use of ultra-low dose of RhBMP-2 (0.07 mg per facet) to achieve spinal fusion in multilevel ASD surgery. Methods: Consecutive patients who underwent ASD surgery using ultra-low dose RhBMP-2 were recruited. Routine postoperative CT analysis for spinal fusion was performed by two spine surgeons. Inter-observer agreement was calculated for facet fusion (FF) and interbody fusion (IBF) at 6 and 12 months after the procedure. Results: Six consecutive ASD patients with a mean age of 62 years (28-72 years) were examined. Each patient received a total dose of 12 mg with an average dose of $0.69{\pm}0.2mg$ (0.42-1 mg) per single FF and $1.38{\pm}0.44mg$ (0.85-2 mg) for IBF. Total 131 FF and 15 IBF were examined in the study, with 88 FFs and nine IBFs being analyzed specifically at 6 months after the surgery. FF and IBF reported by surgeons A and B at 6 months were 97.7% vs. 91.9% FF, respectively (${\kappa}=0.95$) and 100% vs. 100% IBF, respectively (${\kappa}=1$). Two patients underwent longitudinal follow-up CT at 12 months, and the FF rates reported by surgeons A and B were 100% vs. 95.8%, respectively (${\kappa}=0.96$). Five out of nine facet (56%) non-unions were identified at the cross-links. The remaining four facet pseudarthrosis were noted at 1-2 spinal levels caudal to the cross-links. At the final clinical follow-up, there was no rod breakage, deformity progression, neurological deficit, or symptom recurrence. The Oswestry Disability Index improved by an average of $32.8{\pm}6.3$, while the mental component summary of the 36-item Short-Form Health Survey improved by an average of $4.7{\pm}2.1$, and physical component summary improved by an average of $10.5{\pm}2.1$. Conclusions: To our knowledge, this is the first study to report a CT that defined 92%-98% FF and 100% IBF using the lowest reported dose of RhBMP-2 in multilevel ASD surgery. The use of ultra-low dose RhBMP-2 reduces the RhBMP-2 related complications and healthcare costs.

Clinical Efficacy of Intra-Operative Cell Salvage System in Major Spinal Deformity Surgery

  • Choi, Ho Yong;Hyun, Seung-Jae;Kim, Ki-Jeong;Jahng, Tae-Ahn;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.1
    • /
    • pp.53-60
    • /
    • 2019
  • Objective : The purpose of this study was to determine the efficacy of intra-operative cell salvage system (ICS) to decrease the need for allogeneic transfusions in patients undergoing major spinal deformity surgeries. Methods : A total of 113 consecutive patients undergoing long level posterior spinal segmental instrumented fusion (${\geq}5$ levels) for spinal deformity correction were enrolled. Data including the osteotomy status, the number of fused segments, estimated blood loss, intra-operative transfusion amount by ICS (Cell $Saver^{(R)}$, $Haemonetics^{(C)}$, Baltimore, MA, USA) or allogeneic blood, postoperative transfusion amount, and operative time were collected and analyzed. Results : The number of patients was 81 in ICS group and 32 in non-ICS group. There were no significant differences in demographic data and comorbidities between the groups. Autotransfusion by ICS system was performed in 53 patients out of 81 in the ICS group (65.4%) and the amount of transfused blood by ICS was 226.7 mL in ICS group. The mean intra-operative allogeneic blood transfusion requirement was significantly lower in the ICS group than non-ICS group (2.0 vs. 2.9 units, p=0.033). The regression coefficient of ICS use was -1.036. Conclusion : ICS use could decrease the need for intra-operative allogeneic blood transfusion. Specifically, the use of ICS may reduce about one unit amount of allogeneic transfusion in major spinal deformity surgery.

Judging spinal deformity by two characteristic axes on a human back

  • Ishikawa, Seiji;Eguchi, Takemi;Yamaguchi, Toshihiko;Ki, Hyoung-Seop;Otsuka, Yoshinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.438-441
    • /
    • 1996
  • Spinal deformity is a serious disease especially for teenagers and it is desirable for school children to be checked possible spinal deformity by moire photographic inspection method. The moire images of children's backs are visually inspected by doctors, which may cause misjudge because of a large amount of data they have to examine. A technique is proposed in this paper for automating this inspection by computer. Two characteristic axes, a potential symmetry axis approximating the human middle line and a principal axis representing the direction of a moire pattern are employed. Two principal axes are extracted locally on a back and their gradients against the potential symmetry axis are calculated. These gradients compose a 2D feature space and a linear discriminant function (LDF) is defined there which separates normal cases from suspicious cases. The LDF defined by 40 training, data was employed in the experiment to examine 40 test data and 77.5% of them were classified correctly. This amounts to 88.8% if the training data is included.

  • PDF