• 제목/요약/키워드: Spinal cord dorsal horn

검색결과 91건 처리시간 0.027초

Peripheral Nerve Injury Alters Excitatory and Inhibitory Synaptic Transmission in Rat Spinal Cord Substantia Gelatinosa

  • Youn, Dong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권3호
    • /
    • pp.143-147
    • /
    • 2005
  • Following peripheral nerve injury, excessive nociceptive inputs result in diverse physiological alterations in the spinal cord substantia gelatinosa (SG), lamina II of the dorsal horn. Here, I report the alterations of excitatory or inhibitory transmission in the SG of a rat model for neuropathic pain ('spared nerve injury'). Results from whole-cell recordings of SG neurons show that the number of distinct primary afferent fibers, identified by graded intensity of stimulation, is increased at 2 weeks after spared nerve injury. In addition, short-term depression, recognized by paired-pulse ratio of excitatory postsynaptic currents, is significantly increased, indicating the increase of glutamate release probability at primary afferent terminals. The peripheral nerve injury also increases the amplitude, but not the frequency, of spontaneous inhibitory postsynaptic currents. These data support the hypothesis that peripheral nerve injury modifies spinal pain conduction and modulation systems to develop neuropathic pain.

Functional Characteristics of Lumbar Spinal Neurons Projecting to Midbrain Area in Rats

  • Park, Sah-Hoon;Kim, Geon
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.113-122
    • /
    • 1994
  • The present study was carried out to characterize the functional properties of spinomesencephalic tract (SMT) neurons in the lumbar spinal cord of urethane anesthetized rats. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of the midbrain area, including the deep layers of superior colliculus, periaqueductal gray and midbrain reticular formation. Recording sites were located in laminae I-VII of spinal cord segments of L2-L5. Receptive field properties and responses to calibrated mechanical stimulation were studied in 78 SMT cells. Mean conduction velocity of SMT neurons was $19.1{\pm}1.04\;m/sec$. SMT units were classified according to their response profiles into four groups: wide dynamic range (58%), deep/tap (23%), high threshold (9%) and low threshold (3%). A simple excitatory receptive field was found for most SMT neurons recorded in superficial dorsal horn (SDH). Large complex inhibitory and/or excitatory receptive fields were found for cells in lateral reticulated area which usually showed long after-discharge. Most of SMT cells received inputs from $A{\delta}$ and C afferent fiber types. These results suggest that sensory neurons in the rat SMT may have different functional roles according to their location in the spinal cord in integrating and processing sensory inputs including noxious mechanical stimuli.

  • PDF

Effects of Somatostatin on the Responses of Rostrally Projecting Spinal Dorsal Horn Neurons to Noxious Stimuli in Cats

  • Jung, Sung-Jun;Jo, Su-Hyun;Lee, Sang-Hyuck;Oh, Eun-Hui;Kim, Min-Seok;Nam, Woo-Dong;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.253-258
    • /
    • 2008
  • Somatostatin (SOM) is a widely distributed peptide in the central nervous system and exerts a variety of hormonal and neural actions. Although SOM is assumed to play an important role in spinal nociceptive processing, its exact function remains unclear. In fact, earlier pharmacological studies have provided results that support either a facilitatory or inhibitory role for SOM in nociception. In the current study, the effects of SOM were investigated using anesthetized cats. Specifically, the responses of rostrally projecting spinal dorsal horn neurons (RPSDH neurons) to different kinds of noxious stimuli (i.e., heat, mechanical and cold stimuli) and to the $A{\delta}$ -and C-fiber activation of the sciatic nerve were studied. Iontophoretically applied SOM suppressed the responses of RPSDH neurons to noxious heat and mechanical stimuli as well as to C-fiber activation. Conversely, it enhanced these responses to noxious cold stimulus and $A{\delta}$-fiber activation. In addition, SOM suppressed glutamate-evoked activities of RPSDH neurons. The effects of SOM were blocked by the SOM receptor antagonist cyclo-SOM. These findings suggest that SOM has a dual effect on the activities of RPSDH neurons; that is, facilitation and inhibition, depending on the modality of pain signaled through them and its action site.

Effects of Hydrogen Peroxide on Neuronal Excitability and Synaptic Transmission in Rat Substantia Gelatinosa Neurons

  • Son, Yong;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제32권4호
    • /
    • pp.153-160
    • /
    • 2007
  • The superficial dorsal horn, particularly substantia gelatinosa (SG) in the spinal cord, receives inputs from small-diameter primary afferents that predominantly convey noxious sensation. Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. In the present study, whole cell patch clamp recordings were carried out on SG neurons in spinal cord slice of young rats to investigate the effects of hydrogen peroxide on neuronal excitability and excitatory synaptic transmission. In current clamp condition, tert-buthyl hydroperoxide (t-BuOOH), an ROS donor, depolarized membrane potential of SG neurons and increased the neuronal firing frequencies evoked by depolarizing current pulses. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) or ascorbate, ROS scavengers, t-BuOOH did not induce hyperexcitability. In voltage clamp condition, t-BuOOH increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), and monosynaptically evoked excitatory postsynaptic currents (eEPSCs) by electrical stimulation of the ipsilateral dorsal root. These data suggest that ROS generated by peripheral nerve injury can modulate the excitability of the SG neurons via pre- and postsynaptic actions.

초음파가 흰쥐의 좌골신경 압좌손상 후 척수내 Neural Cell Adhesion Molecules의 발현에 미치는 영향 (The Effect of Ultrasound Irradiation on the Neural Cell Adhesion Molecules(NCAM) Expression in Rat Spinal Cord after the Sciatic Nerve Crush Injury)

  • 김현애;한종만
    • The Journal of Korean Physical Therapy
    • /
    • 제19권2호
    • /
    • pp.41-55
    • /
    • 2007
  • Purpose: This study aimed to compare the effect on nerve regeneration of ultrasound irradiation in rats with peripheral nerve injury. Methods: To investigate alterations of the NCAM immunoreactivity in non-crushed part and crushed part of the spinal cord, the unilateral sciatic nerve of the rats were crushed. The expression of NCAM was used as the marked of peripheral nerve regeneration, and also plays an important role in developing nerve system. Experimental animals were sacrificed by perfusion fixation at post-injury 1, 3, 7, 14 days after ultrasound irradiation. The pulsed US was applied at a frequency of 1MHz and a spatial average-temporal average Intensity of 0.5W/of (20% pulse ratio) for 1 mins. The Luxol fast blue-cresyl violet stain were also done to observe the morphological changes. Results: Alteration of NCAM immunoreactivity in the crushed part and the non-crushed part of lower lumbar spinal cord were observed. NCAM-immunoreactivity cells were some increased in the dorsal horn lamina I, III and cell ventral horn at 1 day after unilateral sciatic nerve injury. However, there was not significant difference in the relationship between crushed part and non-crushed part. NCAM-inmmunoreactivity was remarkably increased at 3 days after unilateral sciatic nerve injuryin the gray matter and white matter. NCAM-immunoreactivity was increased in the ventral horn and post horn of experimental crushed part. Also, NCAM-immunoreactivity in large motor neurons in ventral horns lamina VIII, IX were increased at 7 days after unilateral sciatic nerve injury. At 14 days after sciatic nerve crushed injury, there was no significant difference. All group were decreased for 14 days. In the time course of NCAM expression, all groups showed a significant difference at 3day groups(p<0.05). Whereas, CC group was noted a significant difference between 3day and 7 day group respectively. In NCAM expression, there were significantly increased in all group. In the relationship between CNC group and ENC group, significant difference was detected among 3, 7, 14 day group(p<0.05). The difference between CC group and ENC group were noted in all groups(p<0.05). Conclusion: It is consequently suggested that the effects of the ultrasound irradiation may increase the NCAM immunoreactive neurons and glial cell in the spinal cord after unilateral sciatic nerve crushed injury. Therefore, the increased NCAM immunoreactivity in the spinal cord may reflect the neuronal damage and healing process induced by a ultrasound irradiation after peripheral nerve injury in rat.

  • PDF

[$Zn^{2+}$ Modulates the Responses of Rat Dorsal Horn Neuron to C-Fiber Stimulation and Excitatory Amino Acids

  • Ahn, Chang-Hoon;Shin, Hong-Kee;Kim, Jin-Hyuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.455-461
    • /
    • 2000
  • Zinc contained in the neurons of central nervous system is activity-dependently released and then attenuates NMDA (N-methyl-D-aspartate)-induced neurotoxicity while augmenting non-NMDA-induced neurodegeneration. Zinc also has been reported to produce antinociceptive action on the inflammation- and nerve injury-induced hyperalgesia in the behavioral test. In this study, we investigated the effects of zinc on the responses of dorsal horn cells to NMDA, kainate and graded electrical stimulation of C-fibers. In the majority of WDR cells (70.6%), zinc current-dependently inhibited WDR cell responses to NMDA and in the remaining cells, produced biphasic responses; excitation followed by inhibition. Zinc augmented the responses of WDR cells to iontophoretical application of kainate. The dominant effect of $Zn^{2+}$ on the responses of WDR cells to C-fiber stimulation was excitatory, but inhibition, excitation-inhibition and no change of the responses to C-fiber stimulation were induced. $Ca^{2+}-EDTA$ antagonized the excitatory or inhibitory effects of $Zn^{2+}$ on the WDR cell responses. These experimental findings suggest that $Zn^{2+}$ modulates the transmission of sensory information in the rat spinal cord.

  • PDF

Long-Term Potentiation of Excitatory Synaptic Strength in Spinothalamic Tract Neurons of the Rat Spinal Cord

  • Hur, Sung Won;Park, Joo Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.553-558
    • /
    • 2013
  • Spinal dorsal horn nociceptive neurons have been shown to undergo long-term synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Here, we focused on the spinothalamic tract (STT) neurons that are the main nociceptive neurons projecting from the spinal cord to the thalamus. Optical technique using fluorescent dye has made it possible to identify the STT neurons in the spinal cord. Evoked fast mono-synaptic, excitatory postsynaptic currents (eEPSCs) were measured in the STT neurons. Time-based tetanic stimulation (TBS) was employed to induce long-term potentiation (LTP) in the STT neurons. Coincident stimulation of both pre- and postsynaptic neurons using TBS showed immediate and persistent increase in AMPA receptor-mediated EPSCs. LTP can also be induced by postsynaptic spiking together with pharmacological stimulation using chemical NMDA. TBS-induced LTP observed in STT neurons was blocked by internal BAPTA, or $Ni^{2+}$, a T-type VOCC blocker. However, LTP was intact in the presence of L-type VOCC blocker. These results suggest that long-term plastic change of STT neurons requires NMDA receptor activation and postsynaptic calcium but is differentially sensitive to T-type VOCCs.

실험적 관절염 흰쥐 모델에서 고삼추출액이 척수와 척수신경절의 CGRP 면역반응 신경원에 미치는 영향 (The Effects of Sophorae radix Extracts on CGRP Immunoreactive Neurons of Spinal Cord and Ganglia in Experimental Arthritic Rat Model)

  • 신현종;이광규;육상원;이상룡;고병문;이창현
    • 동의생리병리학회지
    • /
    • 제16권1호
    • /
    • pp.117-123
    • /
    • 2002
  • To investigate the antiinflammatory and analgesic effects of Sophorae radix extracts administered to the arthritic rat model, immunohistochemical stains for CGRP in the L4, L5 and L6 spinal cord and ganglia were done, and paw swelling thickness were measured. Complete Freund,s Adjuvant(CFA) were injected to subcutaneous tissue of left foot paw of rats to induce arthritis. Sophorae radix extracts was administered immediately after CFA injection for 10 days. The spinal cord and ganglia were frozen sectioned(30㎛). These sections were stained by CGRP immunohistochemical staining method, and observed with light microscope. The results were as follows : 1. The change of paw swelling thickness of experimental group decreased from 4 day to 10day after CFA injection compared to control group. 2. The change of differential leukocytes counts of experimental group increased the ratio of lymphocytes. and decreased the ratio of neutrophils compared to control group. 3. The change of CGRP immunoreactive nerve fiber of dorsal horn of experimental group was dense stained compared to control group. 4. The number of CGRP immunoreactive neurons of L4 and L5 spinal cord of experimental group was less than in those control group. These results suggested that Sophorae radix extracts reduces the number of CGRP immunoreactive neurons and nerve fibers of spinal cord and ganglia, and decrease paw swelling thickness in arthritic rat model, which may be closely related to analgesic and antiinflammatory effects of Sophorae radix.

Capsaicin에 의한 척수 수준에서의 급성 진통효과와 Norepinephrine의 변화 (Capsaicin Induces Acute Spinal Analgesia and Changes in the Spinal Norepinephrine Level)

  • 박형섭;박경표
    • 대한약리학회지
    • /
    • 제29권1호
    • /
    • pp.33-41
    • /
    • 1993
  • Capsaicin의 중추신경계에 대한 진통효과를 척수 수준에서 규명하고, 이에 대한 norepinephrine (NE)계의 역할을 규명하기 위하여 tail flick reflex (TFR) latency time의 증가와 척수 내 NE 양의 변화를 측정하였다. 웅성의 Sprague-Dawley 백서를 pentobarbital sodium으로 마취를 하여 femoral vein cannulation과 intrathecal catheterization을 하였고, 이를 통하여 시험약제를 투여하였다. TFR은 capsaicin 또는 용매 투여전, 투여후 10분, 30분, 60분, 때로는 2시간에 측정하였다. MK-801은 capsaicin 투여전 20분에 femoral vein을 통하여 주입하였다. $35{\sim}150{\mu}g$의 capsaicin을 intrathecal로 주었을 때, TFR latency가 최고치인 7초를 넘어 정상인 2.9초에 비해 100% 이상의 증가를 보였고, 척수 내 NE은 16 ng/mg protein에서 7 ng/mg protein으로 50% 이상 감소하였다. 이와 같은 TFR latency의 증가와 NE의 감소는 전 실험기간 (capsaicin 투여후 2시간)에 걸쳐 관찰되었다. 반면, 50mg/kg의 capsaicin을 피하로 전신투여 하였을 경우에 척수 NE은 같은 변화를 보였으나 TFR latency의 차이는 없었다. 또한, 0.5 mg/kg의 MK-801를 i.v.로 전처치 하였을 때, intrathecal capsaicin에 의한 TFR latency의 증가와 척수 내 NE의 감소가 모두 억제되었다. 이상의 결과는 capsain이 excitatory aminoacid (EAA)계 - NE계 - 척수 dorsal horn으로 이루어진 동통전달의 하행성 억제계 축의 활성을 항진시켜 진통효과를 가져옴을 보여준다. 또한, capsaicin의 피하 주사시에 진통효과를 볼 수 없음을 말초 동통전달신경의 흥분에 의한 중추 동통전달계 환성의 촉진이 진통 효과를 상쇄함을 암시한다.

  • PDF

Sensory Inputs to Upper Cervical Spinal Neurons Projecting to Midbrain in Cats

  • Kim, Jong-Ho;Jeong, Han-Seong;Park, Jong-Seong;Kim, Jong-Keun;Park, Sah-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.9-19
    • /
    • 1998
  • The present study was primarily carried out to characterize the properties of the spinomesencephalic tract (SMT) neurons that project from the upper cervical spinal segments to the midbrain. It was also investigated whether these neurons received convergent afferent inputs from other sources in addition to cervical inputs. Extracellular single unit recordings were made from neurons antidromically activated by stimulation of midbrain. Recording sites were located in lamina $I{\sim}VIII\;of\;C1{\sim}C3$ segments of spinal cord. Receptive field (RF) and response properties to mechanical stimulation were studied in 71 SMT neurons. Response profiles were classified into six groups: complex (Comp, n=9), wide dynamic range (WDR, n=16), low threshold (LT, n=5), high threshold (HT, n=6), deep/tap (Deep, n=10), and non- responsive (NR, n=25). Distributions of stimulation and recording sites were not significantly different between SMT groups classified upon their locations and/or response profiles. Mean conduction velocity of SMT neurons was $16.7{\pm}1.28\;m/sec$. Conduction velocities of SMTs recorded in superficial dorsal horn (SDH, n=15) were significantly slower than those of SMTs recorded in deep dorsal horn (DDH, n=18), lateral reticulated area (LRA, n=21), and intermediate zone and ventral horn (IZ/VH, n=15). Somatic RFs for SMTs in LRA and IZ/VH were significantly larger than those in SDH and DDH. Five SMT units (4 Comps and 1 HT) had inhibitory somatic RFs. About half (25/46) of SMT units have their RFs over trigeminal dermatome. Excitabilities of 5/12 cells and 9/13 cells were modulated by stimulation of ipsilateral phrenic nerve and vagus nerve, respectively. These results suggest that upper cervical SMT neurons are heterogenous in their function by showing a wide range of variety in location within the spinal gray matter, in response profile, and in convergent afferent input.

  • PDF