• 제목/요약/키워드: Spinal cord: anatomy

검색결과 81건 처리시간 0.031초

6-Aminonicotinamide 투여 후 햄스터 척수 중심관의 형태변화 (Morphological Changes in The Central Canal of the Hamster Spinal Cord after Treatment with 6-Aminonicotinamide)

  • 양영철;조병필;강호석;박인국
    • Applied Microscopy
    • /
    • 제27권2호
    • /
    • pp.177-187
    • /
    • 1997
  • Hydrocephalus is induced experimentally in prenatal and suckling animals following an injection of 6-aminonicotinamide (6-AN). The most remarkable characteristic of these animals is aqueduct stenosis caused by swellings of the ependymal cells and subependymal cells in the periaqueductal gray matter and the central canal of the spinal cord. The present study was undertaken to investigate the morphological changes of the ependymal cells in the central canal of the spinal cord of 3.5 months old hamster after treatment with 6-AN. Intraperitoneal administrations of 6-AN (10 mg/kg body weight) every two days gave rise to partial central canal stenosis of the spinal cord after 27-29 days (13-l4th injection), but cilia and microvilli were located in the strictural area of the con#rat canal. The vacuolations in the ependymal cells were not observed and degenerating changes of intracellular organelles of the ependymal cells did not occur, so that the ependymal cells lining the central canal of the hamster spinal cord were not affected by 6-AN. But the present study demonstrate that 6-AN causes to create numerous vacuoles in the subependymal area of the central canal. Although the vacuoles were well developed in the neuroglial cells and the neuropils of the subependymal area, the neurons were not affected by 6-AN. These results strongly suggests that partial central canal stenosis occurred by 6-AN was due to vacuolations and swellings of the neuroglial cells and nueropils in the subependymal area.

  • PDF

흰쥐에서 척수 손상후 반응성 별아교세포에서의 CNTF 발현 증가 (Increased CNTF Expression in the Reactive Astrocyte Following Spinal Cord Injury in Rats)

  • 김창재;문세호;이병호;정미영;채준석;이문용;천명훈
    • The Korean Journal of Pain
    • /
    • 제11권2호
    • /
    • pp.182-193
    • /
    • 1998
  • Background: Ciliary neurotrophic factor (CNTF), identified as a survival factor for developing peripheral neurons is upregulated by reactive astrocytes in the traumatized tissue and in areas of terminal degeneration after a brain lesion. But in the spinal cord, CNTF is expressed in the non-astrocytic phenotypic, maybe oligodendrocytes. The present study was undertaken to determine the upregulation of CNTF expression in reactive astrocytes following spinal cord lesion in the rat. Methods: Unilateral incision of the dorsal funiculus at the thoracic level was performed and rats were sacrificed on days 3, 7, 14 and 28 postlesion. Western blot analysis, immunocytochemical analysis and double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) were performed after spinal cord lesion. Results: A major band with 24 kDa and additional band of higher molecular weight form were detectable, and the intensity of the 24 kDa immunoreactive band increased up to 14 days postlesion and decreased toward laminectomized control values. CNTF immunoreactivity was markedly upregulated in the injured dorsal funiculus and adjacent gray matter. The time course of CNTF expression is coincident with the appearance of reactive astrocytes in the injured spinal cord. Moreover, double immunofluorescence for CNTF and glial fibrillary acidic protein (GFAP) revealed that CNTF immunoreactivity was in GFAP immunoreactive astrocytes. Conclusions: These results show that CNTF upregulation occurred in reactive astrocytes following spinal cord lesion, and suggest a role for CNTF in the regulation of astrocytic responses after spinal cord injury.

  • PDF

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury

  • Park, Hwan-Woo;Oh, Soonyi;Lee, Kyung Hee;Lee, Bae Hwan;Chang, Mi-Sook
    • International Journal of Stem Cells
    • /
    • 제11권2호
    • /
    • pp.177-186
    • /
    • 2018
  • Background and Objectives: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.

Vitamin $D_3$ Up-Regulated Protein 1 (VDUP1) Gene Expression in Spinal Cord Injury

  • Song, Su-Sung;Lee, Young-Ho
    • 대한의생명과학회지
    • /
    • 제10권1호
    • /
    • pp.15-21
    • /
    • 2004
  • Vitamin $D_3$ up-regulated protein 1 (VDUP1) gene is known to be a novel member of early response genes as an oxidative stress mediator. To elucidate role of VDUP1 expression in neuronal injury, VDUP1 gene expression and histological change were tested in the spinal cords after traumatic spinal cord injury (SCI) in young and adult rats. VDUP1 transcript was detected weakly in a few cells in the spinal cords of control young and adult rats. VDUP1 transcript was increased in the contused spinal cords 1 day after SCI in both young and adult rats. VDUP1 transcript was decreased in the spinal cords 7 days after SCI in young rats. However, VDUP1 transcript was not decrease significantly 7 days in the spinal cords after SCI in adult rats. Cell damage in the spinal cords and hind limb dysfunction were more prominent 7 days after SCI in adult rats compared with that in young rats. These data show that VDUP1 may be involved in neurodegeneration after traumatic SCI.

  • PDF

Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1

  • Kim, Yonghoon;Kim, Jeongtae;Ahn, Meejung;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • 제50권3호
    • /
    • pp.207-213
    • /
    • 2017
  • Glycogen synthase kinase $(GSK)-3{\beta}$ and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of $GSK-3{\beta}$, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative $GSK-3{\beta}$-associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of $GSK-3{\beta}$ (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that $GSK-3{\beta}$ becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of $GSK-3{\beta}$ and the associated molecules Nrf-2 and HO-1.

실험적 관절염 흰쥐 모델에서 고삼추출액이 척수와 척수신경절의 CGRP 면역반응 신경원에 미치는 영향 (The Effects of Sophorae radix Extracts on CGRP Immunoreactive Neurons of Spinal Cord and Ganglia in Experimental Arthritic Rat Model)

  • 신현종;이광규;육상원;이상룡;고병문;이창현
    • 동의생리병리학회지
    • /
    • 제16권1호
    • /
    • pp.117-123
    • /
    • 2002
  • To investigate the antiinflammatory and analgesic effects of Sophorae radix extracts administered to the arthritic rat model, immunohistochemical stains for CGRP in the L4, L5 and L6 spinal cord and ganglia were done, and paw swelling thickness were measured. Complete Freund,s Adjuvant(CFA) were injected to subcutaneous tissue of left foot paw of rats to induce arthritis. Sophorae radix extracts was administered immediately after CFA injection for 10 days. The spinal cord and ganglia were frozen sectioned(30㎛). These sections were stained by CGRP immunohistochemical staining method, and observed with light microscope. The results were as follows : 1. The change of paw swelling thickness of experimental group decreased from 4 day to 10day after CFA injection compared to control group. 2. The change of differential leukocytes counts of experimental group increased the ratio of lymphocytes. and decreased the ratio of neutrophils compared to control group. 3. The change of CGRP immunoreactive nerve fiber of dorsal horn of experimental group was dense stained compared to control group. 4. The number of CGRP immunoreactive neurons of L4 and L5 spinal cord of experimental group was less than in those control group. These results suggested that Sophorae radix extracts reduces the number of CGRP immunoreactive neurons and nerve fibers of spinal cord and ganglia, and decrease paw swelling thickness in arthritic rat model, which may be closely related to analgesic and antiinflammatory effects of Sophorae radix.

6-Aminonicotinamide 투여 후 햄스터 척수의 미세구조 변화 (Ultrastructural Changes of the Spinal Cord after Treatment with 6-Aminonicotinamide)

  • 양영철
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.281-293
    • /
    • 1997
  • The effects of antimetabolite, 6-aminonicotinamide (6-AN), on ultrastrudural changes in the spinal cord of golden hamster were investigated. Intraperitoneal administration of 6-AN (10 mg/kg body weight) every two days gave rise to a marked reduction of about $30\sim40%$ in body weight after $26\sim28$ days ($13\sim14th$ injection). In the lesions of the spinal cord, neuroglial cells such as astrocytes and oligodendrocytes were severely damaged, but neurons and blood vessels were not affected by 6-AN. The myelin sheath was also affected by 6-AN. Vacuoles observed in the lesions were produced by the swelling and degenerating changes of neuropils and neuroglial cells. Numerous swollen mitochondria and cisterns of rough endoplasmic reticulum were observed in the watery cytoplasm of damaged neuroglial cells, but intermediate filaments were well preserved. Especially in the damaged astrocytes, the outer nuclear membrane were partially swollen and formed a halfmoonlike structure. It is suggested that as well as the multivesicular bodies protruding from the swollen dendrites, the conjugation of adjacent vacuoles also participated in the formation of large vacuoles.

  • PDF

The Effect of Minocycline on Motor Neuron Recovery and Neuropathic Pain in a Rat Model of Spinal Cord Injury

  • Cho, Dong-Charn;Cheong, Jin-Hwan;Yang, Moon-Sul;Hwang, Se-Jin;Kim, Jae-Min;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권2호
    • /
    • pp.83-91
    • /
    • 2011
  • Objective : Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury. Methods : To simulate spinal cord injury, the rats' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test Mechanical hyperalgesia was measured throughout the 28-day post -operative course via the von Frey test Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (lba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5). Results : In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of lba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of lba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline. Conclusion : By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.