• 제목/요약/키워드: Spinal bone fusion

검색결과 88건 처리시간 0.03초

척추융합이 진행된 강직성 척추염에 의료기공과 한방요법을 적용한 증례 보고 (A Case Report of Medical Gi-Gong and Korean Medical Therapy for advanced Ankylosing Spondylitis with spinal fusion)

  • 이은미;정재훈;나삼식;안훈모
    • 대한의료기공학회지
    • /
    • 제19권1호
    • /
    • pp.99-115
    • /
    • 2019
  • Introduction : In patient with ankylosing spondylitis, when bone formation progresses, spinal fusion occurs and joint motion is severely limited. We performed Medical Gi-gong and Korean medical therapies in patient with advanced ankylosing spondylitis with spinal fusion. Case : 46-year-old male with extensive spinal fusion at the cervical and lumbar spine complains of back pain, hip pain, joint stiffness, eye pain, and digestive problems. HLA-B27 (+), mSASSS is 70. Medical Gi-gong was done 311 days for 340 days. Acupuncture, cupping, and manual treatment were performed once every 5.9 days for one year. BASDAI improved from 5.3 to 4.3, BASFI from 4.3 to 3.7, and BASMI from 6.8 to 5.8. mSASSS did not change. Conclusions : Patients with advanced ankylosing spondylitis were treated with Medical Gigong and Korean medical therapies to achieve a slight improvement.

Posterior Thoracic Cage Interbody Fusion Offers Solid Bone Fusion with Sagittal Alignment Preservation for Decompression and Fusion Surgery in Lower Thoracic and Thoracolumbar Spine

  • Shin, Hong Kyung;Kim, Moinay;Oh, Sun Kyu;Choi, Il;Seo, Dong Kwang;Park, Jin Hoon;Roh, Sung Woo;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권6호
    • /
    • pp.922-932
    • /
    • 2021
  • Objective : It is challenging to make solid fusion by posterior screw fixation and laminectomy with posterolateral fusion (PLF) in thoracic and thoracolumbar (TL) diseases. In this study, we report our experience and follow-up results with a new surgical technique entitled posterior thoracic cage interbody fusion (PTCIF) for thoracic and TL spine in comparison with conventional PLF. Methods : After institutional review board approval, a total of 57 patients who underwent PTCIF (n=30) and conventional PLF (n=27) for decompression and fusion in thoracic and TL spine between 2004 and 2019 were analyzed. Clinical outcomes and radiological parameters, including bone fusion, regional Cobb angle, and proximal junctional Cobb angle, were evaluated. Results : In PTCIF and conventional PLF, the mean age was 61.2 and 58.2 years (p=0.46), and the numbers of levels fused were 2.8 and 3.1 (p=0.46), respectively. Every patient showed functional improvement except one case of PTCIF. Postoperative hematoma as a perioperative complication occurred in one and three cases, respectively. The mean difference in the regional Cobb angle immediately after surgery compared with that of the last follow-up was 1.4° in PTCIF and 7.6° in conventional PLF (p=0.003), respectively. The mean durations of postoperative follow-up were 35.6 months in PTCIF and 37.3 months in conventional PLF (p=0.86). Conclusion : PTCIF is an effective fusion method in decompression and fixation surgery with good clinical outcomes for various spinal diseases in the thoracic and TL spine. It provides more stable bone fusion than conventional PLF by anterior column support.

Do Trunk Muscles Affect the Lumbar Interbody Fusion Rate? : Correlation of Trunk Muscle Cross Sectional Area and Fusion Rates after Posterior Lumbar Interbody Fusion Using Stand-Alone Cage

  • Choi, Man Kyu;Kim, Sung Bum;Park, Bong Jin;Park, Chang Kyu;Kim, Sung Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권3호
    • /
    • pp.276-281
    • /
    • 2016
  • Objective : Although trunk muscles in the lumbar spine preserve spinal stability and motility, little is known about the relationship between trunk muscles and spinal fusion rate. The aim of the present study is to evaluate the correlation between trunk muscles cross sectional area (MCSA) and fusion rate after posterior lumbar interbody fusion (PLIF) using stand-alone cages. Methods : A total of 89 adult patients with degenerative lumbar disease who were performed PLIF using stand-alone cages at L4-5 were included in this study. The cross-sectional area of the psoas major (PS), erector spinae (ES), and multifidus (MF) muscles were quantitatively evaluated by preoperative lumbar magnetic resonance imaging at the L3-4, L4-5, and L5-S1 segments, and bone union was evaluated by dynamic lumbar X-rays. Results : Of the 89 patients, 68 had bone union and 21 did not. The MCSAs at all segments in both groups were significantly different (p<0.05) for the PS muscle, those at L3-4 and L4-5 segments between groups were significantly different (p=0.048, 0.021) for the ES and MF muscles. In the multivariate analysis, differences in the PS MCSA at the L4-5 and L5-S1 segments remained significant (p=0.048, 0.043 and odds ratio=1.098, 1.169). In comparison analysis between male and female patients, most MCSAs of male patients were larger than female's. Fusion rates of male patients (80.7%) were higher than female's (68.8%), too. Conclusion : For PLIF surgery, PS muscle function appears to be an important factor for bone union and preventing back muscle injury is essential for better fusion rate.

Biomechanical Analysis of Biodegradable Cervical Plates Developed for Anterior Cervical Discectomy and Fusion

  • Cho, Pyung Goo;Ji, Gyu Yeul;Park, Sang Hyuk;Shin, Dong Ah
    • Asian Spine Journal
    • /
    • 제12권6호
    • /
    • pp.1092-1099
    • /
    • 2018
  • Study Design: In-vitro biomechanical investigation. Purpose: To evaluate the biomechanical effects of the degeneration of the biodegradable cervical plates developed for anterior cervical discectomy and fusion (ACDF) on fusion and adjacent levels. Overview of Literature: Biodegradable implants have been recently introduced for cervical spine surgery. However, their effectiveness and safety remains unclear. Methods: A linear three-dimensional finite element (FE) model of the lower cervical spine, comprising the C4-C6 vertebrae was developed using computed tomography images of a 46-year-old woman. The model was validated by comparison with previous reports. Four models of ACDF were analyzed and compared: (1) a titanium plate and bone block (Tita), (2) strong biodegradable plate and bone block (PLA-4G) that represents the early state of the biodegradable plate with full strength, (3) weak biodegradable plate and bone block (PLA-1G) that represents the late state of the biodegradable plate with decreased strength, and (4) stand-alone bone block (Bloc). FE analysis was performed to investigate the relative motion and intervertebral disc stress at the surgical (C5-C6 segment) and adjacent (C4-C5 segment) levels. Results: The Tita and PLA-4G models were superior to the other models in terms of higher segment stiffness, smaller relative motion, and lower bone stress at the surgical level. However, the maximal von Mises stress at the intervertebral disc at the adjacent level was significantly higher in the Tita and PLA-4G models than in the other models. The relative motion at the adjacent level was significantly lower in the PLA-1G and Bloc models than in the other models. Conclusions: The use of biodegradable plates will enhance spinal fusion in the initial stronger period and prevent adjacent segment degeneration in the later, weaker period.

What are the Differences in Outcome among Various Fusion Methods of the Lumbar Spine?

  • Kang, Suk-Hyung;Kim, Young-Baeg;Park, Seung-Won;Hong, Hyun-Jong;Min, Byung-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • 제37권1호
    • /
    • pp.39-43
    • /
    • 2005
  • Objective: For Posterior lumbar interbody fusion(PLIF) various cages or iliac bone dowels are used with or without pedicle screw fixation(PSF). To evaluate and compare the clinical and radiological results of different fusion methods, we intend to verify the effect of added PSF on PLIF, the effect of bone cages and several factors which are thought to be related with the postoperative prognosis. Methods: One hundred and ninety seven patients with lumbar spinal stenosis and instability or spondylolisthesis underwent various fusion operations from May 1993 to May 2003. The patients were divided into five groups, group A (PLIF with autologous bone dowels, N=24), group B (PLIF with bone cages, N=13), group C (PLIF with bone dowels and PSF, N=37), group D (PLIF with bone cages and PSF, N=30) and group E (PSF with intertransverse bone graft, N=93) for comparison and analyzed for the outcome and fusion rate. Results: Outcome was not significantly different among the five groups. In intervertebral height (IVH) changes between pre- and post-operation, Group B ($2.42{\pm}2.20mm$) was better than Group A ($-1.33{\pm}2.05mm$). But in the Group C, D and E, the IVH changes were not different statistically. Fusion rate of group C, D was higher than that of Group A and B. But the intervertebral height(IVH) increased significantly in group B($2.42{\pm}2.20mm$). Fusion rate of group C and D were higher than that of group A and D. Conclusion: Intervertebral cages are superior to autologous iliac bone dowels for maintaining intervertebral height in PLIF. The additional pedicle screw fixation seems to stabilize the graft and improve fusion rates.

Functional Outcomes of Subaxial Spine Injuries Managed With 2-Level Anterior Cervical Corpectomy and Fusion: A Prospective Study

  • Jain, Vaibhav;Madan, Ankit;Thakur, Manoj;Thakur, Amit
    • Neurospine
    • /
    • 제15권4호
    • /
    • pp.368-375
    • /
    • 2018
  • Objective: To evaluate the results of operative management of subaxial spine injuries managed with 2-level anterior cervical corpectomy and fusion with a cervical locking plate and autologous bone-filled titanium mesh cage. Methods: This study included 23 patients with a subaxial spine injury who matched the inclusion criteria, underwent 2-level anterior cervical corpectomy and fusion at our institution between 2013 and 2016, and were followed up for neurological recovery, axial pain, fusion, pseudarthrosis, and implant failure. Results: According to Allen and Ferguson classification, there were 9 cases of distractive extension; 4 of compressive extension; 3 each of compressive flexion, vertical compression, and distractive flexion; and 1 of lateral flexion. Sixteen patients had a score of 6 on the Subaxial Injury Classification system, and the rest had a score of more than 6. The mean follow-up period was 19 months (range, 12-48 months). Neurological recovery was observed in most of the patients (78.21%). All patients experienced relief of axial pain. None of the patients received a blood transfusion. Twenty-one patients (91.3%) showed solid fusion and 2 (8.69%) showed possible pseudarthrosis, with no complications related to the cage or plate. Conclusion: Two-level anterior cervical corpectomy and fusion, along with stabilization with a cervical locking plate and autologous bone graft-filled titanium mesh cage, can be considered a feasible and safe method for treating specific subaxial spine injuries, with the benefits of high primary stability, anatomical reduction, and direct decompression of the spinal cord.

Delayed Retroperitoneal Hemorrhage due to Lumbar Artery Pseudoaneurysm after Lumbar Posterolateral Fusion

  • Oh, Young Min;Choi, Ha Young;Eun, Jong Pil
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권4호
    • /
    • pp.344-346
    • /
    • 2013
  • A 55-year-old female patient presented with lower back pain and neurogenic intermittent claudication and underwent L3-L4 posterolateral fusion. To prepare the bone fusion bed, the transverse process of L3 and L4 was decorticated with a drill. On the 9th post-operative day, the patient complained of a sudden onset of severe abdominal pain and distension. Abdominal computed tomography revealed retroperitoneal hematoma in the right psoas muscle and iatrogenic right L3 transverse process fracture. Lumbar spinal angiography showed the delayed hematoma due to rupture of the 2nd lumbar artery pseudoaneurysm and coil embolization was done at the ruptured lumbar artery pseudoaneusyrm. Since then, the patient's postoperative progress proceeded normally with recovery of the hemodynamic parameters.

Instrumentation Failure after Partial Corpectomy with Instrumentation of a Metastatic Spine

  • Park, Sung Bae;Kim, Ki Jeong;Han, Sanghyun;Oh, Sohee;Kim, Chi Heon;Chung, Chun Kee
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권3호
    • /
    • pp.415-423
    • /
    • 2018
  • Objective : To identify the perioperative factors associated with instrument failure in patients undergoing a partial corpectomy with instrumentation (PCI) for spinal metastasis. Methods : We assessed the one hundred twenty-four patients with who underwent PCI for a metastatic spine from 1987 to 2011. Outcome measure was the risk factor related to implantation failure. The preoperative factors analyzed were age, sex, ambulation, American Spinal Injury Association grade, bone mineral density, use of steroid, primary tumor site, number of vertebrae with metastasis, extra-bone metastasis, preoperative adjuvant chemotherapy, and preoperative spinal radiotherapy. The intraoperative factors were the number of fixed vertebrae, fixation in osteolytic vertebrae, bone grafting, and type of surgical approach. The postoperative factors included postoperative adjuvant chemotherapy and spinal radiotherapy. This study was supported by the National Research Foundation grant funded by government. There were no study-specific biases related to conflicts of interest. Results : There were 15 instrumentation failures (15/124, 12.1%). Preoperative ambulatory status and primary tumor site were not significantly related to the development of implant failure. There were no significant associations between insertion of a bone graft into the partial corpectomy site and instrumentation failure. The preoperative and operative factors analyzed were not significantly related to instrumentation failure. In univariable and multivariable analyses, postoperative spinal radiotherapy was the only significant variable related to instrumentation failure (p=0.049 and 0.050, respectively). Conclusion : When performing PCI in patients with spinal metastasis followed by postoperative spinal radiotherapy, the surgeon may consider the possibility of instrumentation failure and find other strategies for augmentation than the use of a bone graft for fusion.

Bone Cement Dislodgement : One of Complications Following Bone Cement Augmentation Procedures for Osteoporotic Spinal Fracture

  • Ha, Kee-Yong;Kim, Young-Hoon;Yoo, Sung-Rim;Molon, Jan Noel
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권5호
    • /
    • pp.367-370
    • /
    • 2015
  • Bone cement augmentation procedures have been getting more position as a minimally invasive surgical option for osteoporotic spinal fractures. However, complications related to these procedures have been increasingly reported. We describe a case of bone cement dislodgement following cement augmentation procedure for osteoporotic spinal fracture by reviewing the patient's medical records, imaging results and related literatures. A 73-year-old woman suffering back and buttock pain following a fall from level ground was diagnosed as an osteoporotic fracture of the 11th thoracic spine. Percutaneous kyphoplasty was performed for this lesion. Six weeks later, the patient complained of a recurrence of back and buttock pain. Radiologic images revealed superior dislodgement of bone cement through the 11th thoracic superior endplate with destruction of the lower part of the 10th thoracic spine. Staged anterior and posterior fusion was performed. Two years postoperatively, the patient carries on with her daily living without any significant disability. Delayed bone cement dislodgement can occur as one of complications following bone cement augmentation procedure for osteoporotic spinal fracture. It might be related to the presence of intravertebral cleft, lack of interdigitation of bone cement with the surrounding trabeculae, and possible damage of endplate during ballooning procedure.

Clinical Comparison of Posterolateral Fusion with Posterior Lumbar Interbody Fusion

  • Kim, Chang-Hyun;Gill, Seung-Bae;Jung, Myeng-Hun;Jang, Yeun-Kyu;Kim, Seong-Su
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권2호
    • /
    • pp.84-89
    • /
    • 2006
  • Objective : The purpose of this study is to compare the outcomes of two methods for stabilization and fusion : Postero-Lateral Fusion [PLF, pedicle screw fixation with bone graft] and Posterior Lumbar Interbody Fusion [PLIF, cage insertion] for spinal stenosis and recurred disc herniation except degenerative spondylolisthesis. Methods : Seventy one patients who underwent PLF [n=36] or PLIF [n=35] between 1997 and 2001 were evaluated prospectively. These two groups were compared for the change of interbody space, the range of segmental angle, the angle of lumbar motion, and clinical outcomes by Prolo scale. Results : The mean follow-up period was 32.6 months. The PLIF group showed statistically significant increase of the interbody space after surgery. However, the difference in the change of interbody space between two groups was insignificant [P value=0.05]. The range of segmental angle was better in the PLIF group, but the difference in the change of segmental angle was not statistically significant [P value=0.0l7]. Angle of lumbar motion was similar in the two groups. Changes of Prolo economic scale were not statistically significant [P value=0.193]. The PLIF group showed statistically significant improvement in Prolo functional scale [P value=0.003]. In Prolo economic and functional scale, there were statistically significant relationships between follow-up duration [P value<0.001]. change of interbody space [P value<0.001], and range of segmental angle [P value<0.001]. Conclusion : Results of this study indicate that PLIF is superior to PLF in interbody space augmentation and clinical outcomes by Prolo functional scale. Analysis of clinical outcomes showed significant relationships among various factors [fusion type, follow-up duration, change of interbody space, and range of segmental angle]. Therefore, the authors recommend instrumented PLIF to offer better clinical outcomes in patients who needed instrumented lumbar fusion for spinal stenosis and recurred disc herniation.