• Title/Summary/Keyword: Spinal animals

Search Result 78, Processing Time 0.02 seconds

Lithium ameliorates rat spinal cord injury by suppressing glycogen synthase kinase-3β and activating heme oxygenase-1

  • Kim, Yonghoon;Kim, Jeongtae;Ahn, Meejung;Shin, Taekyun
    • Anatomy and Cell Biology
    • /
    • v.50 no.3
    • /
    • pp.207-213
    • /
    • 2017
  • Glycogen synthase kinase $(GSK)-3{\beta}$ and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of $GSK-3{\beta}$, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative $GSK-3{\beta}$-associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of $GSK-3{\beta}$ (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that $GSK-3{\beta}$ becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of $GSK-3{\beta}$ and the associated molecules Nrf-2 and HO-1.

Induction of Adenosine Release by 6-Paradol, a Long Lasting Analgesic, in Rat Spinal Cord (흰쥐 척수에서 지속성 진통물질 6-파라돌에 의한 아데노신의 유리 증가)

  • Yoo, Eun-Sook;Kim, Ok-Hee;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.499-504
    • /
    • 2000
  • We previously demonstrated that 6-paradol, a compound structurally related to capsaicin, showed to produce prolonged analgesia in experimental animals. The effects of 6-paradol on the release of adenosine were investigated in the rat spinal cord synaptosomes by high performance liquid chromatography. In the presence of $Ca^{++}$, adenosine was released from synaptosomes of rat spinal cord by 6-paradol and capsaicin in a dose dependent manner. Nifedifine, L-type voltage sensitive calcium channel blocker, was found to be ineffective in releasing adenosine by $10\;{\mu}M$ 6-paradol. After exposure to $10\;{\mu}M$ capsazepine, a novel capsaicin selective antagonist, the level of adenosine evoked by $10\;{\mu}M$ 6-paradol was decreased by 75%, and that evoked by $10\;{\mu}M$ capsaicin was blocked completely. These results suggest that the analgesic effect of 6-paradol might be mediated by the vanilloid (capsaicin) sensitive pathway, or the direct binding to the vanilloid receptor.

  • PDF

A Study on the Hypotensive Action of Akebiae Lignum Ethanol Extract in Rabbits (목통(木通) Ethanol Extract의 혈압강하작용(血壓降下作用)에 관(關)한 연구(硏究))

  • Kang, Ho-Yun
    • Journal of Pharmaceutical Investigation
    • /
    • v.9 no.2
    • /
    • pp.22-30
    • /
    • 1979
  • Effects of Akebiae Lignum, whose scientific name is Akebia quinata Decaisne, on the blood pressure were investigated with EtOH extract in whole and spinal rabbits. Akebia Lignum EtOH extract (AEE), when given intravenously, produced a fall in blood pressure not only in whole rabbit but also in spinal rabbit and AEE administered into a lateral cerebral ventricle of whole rabbit did not elicit a fall in blood pressure. The depressor responses of the whole rabbit to intravenous AEE were weakened by treatment of the animals with atropine and chlorisondamine but not by vagotominijation, phentolamine avil, and then the depressor action causing by AEE in the whole rabbit was not affected by pretreatment of physostigmine which is cholinesterase inhibitor and of hemicholinium which blocks acetylcholine synthesis by interfering with choline uptake in nerves. These observations suggest that the hypotensive action of AEE of which component is not affected by cholinesterase is due to direct action at parasympathetic receptor.

  • PDF

Single-Channel Recording of TASK-3-like $K^+$ Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons

  • Jang, In-Seok;La, Jun-Ho;Kim, Gyu-Tae;Lee, Jeong-Soon;Kim, Eun-Jin;Lee, Eun-Shin;Kim, Su-Jeong;Seo, Jeong-Min;Ahn, Sang-Ho;Park, Jae-Yong;Hong, Seong-Geun;Kang, Da-Won;Han, Jae-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.245-251
    • /
    • 2008
  • Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain $K^+$ channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like $K^+$ channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like $K^+$ channel was $33.0{\pm}0.1$ pS at - 60 mV, and TASK-3 activity fell by $65{\pm}5%$ when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG $K^+$ channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background $K^+$ channel under SCI-induced acidic condition.

Antinarcotic Effect of Panax ginseng

  • Hack Seang Kim;Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.36-44
    • /
    • 1990
  • The analgesic effect of morphine was antagonized and the development of tolerance was suppressed by the modification of the neurologic function in the animals treated with ginseng saponins. The activation of the spinal descending inhibitory systems as well as the supraspinal structures by the administration of morphine was inhibited in the animals treated with ginseng saponins intracerebrally or intrathecally The development of morphine tolerance and dependence, and the abrupt expression of naloxone induced abstinence syndrome were also inhibited by ginsenoside Kbl , Rba, Rgl and Re. These results suggest that ginsenoside Kbl, Rba, Rgl and Re are the bioactive components of panax ginseng on the inhibition of the development of morphine tolerance and dependence, and the inhibition of abrupt abstinence syndrome. In addition, further research on the minor components of Panax ginseng should be investigated. A single or daily treatment with ginseng saponins did not induce any appreciable changes in the brain level of monoamines at the various time intervals and at the various day intervals, respectively The inhibitory or facilitated effects of ginseng saponins on electrically evoked contractions in guinea pig ileum (U-receptor) and mouse was definers (5·receptor) were not mediated through opioid receptors. The antagonism of a x receptor agonist, U-, iO.488H was also not mediated through opioid receptors in the animals treated with ginseng saponins, bolt mediated through serotonergic mechanisms. Ginseng saponins inhibited morphine S-dehydrogenase that catalyzed the production of morphine from morphine, and increased hepatic glutathione contents for the detoxification of morphine. This result suggests that the dual action of the above plays an important role in the inhibition of the development of morphine tolerance and dependence.

  • PDF

Unsuspected Plasticity of Single Neurons after Connection of the Corticospinal Tract with Peripheral Nerves in Spinal Cord Lesions

  • Brunelli, Giorgio;Wild, Klaus von
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Objective: To report an unsuspected adaptive plasticity of single upper motor neurons and of primary motor cortex found after microsurgical connection of the spinal cord with peripheral nerve via grafts in paraplegics and focussed discussion of the reviewed literature. Methods: The research aimed at making paraplegics walk again, after 20 years of experimental surgery in animals. Amongst other things, animal experiments demonstrated the alteration of the motor endplates receptors from cholinergic to glutamatergic induced by connection with upper motor neurons. The same paradigm was successfully performed in paraplegic humans. The nerve grafts were put into the ventral-lateral spinal tract randomly, with out possibility of choosing the axons coming from different areas of the motor cortex. Results: The patient became able to selectively activate the re-innervated muscles she wanted without concurrent activities of other muscles connected with the same cortical areas. Conclusion: Authors believe that unlike in nerve or tendon transfers, where the whole cortical area corresponding to the transfer changes its function a phenomenon that we call "brain plasticity by areas". in our paradigm due to the direct connection of upper motor neurons with different peripheral nerves and muscles via nerve grafts motor learning occurs based on adaptive neuronal plasticity so that simultaneous contractions of other muscles are prevented. We propose to call it adaptive functional "plasticity by single neurons". We speculate that this phenomenon is due to the simultaneous activation of neurons spread in different cortical areas for a given specific movement, whilst the other neurons of the same areas connected with peripheral nerves of different muscles are not activated at the same time. Why different neurons of the same area fire at different times according to different voluntary demands remains to be discovered. We are committed to solve this enigma hereafter.

IV Morphine Produced Spinal Antinociception Partly by Nitric Oxide (모르핀 정맥 투여시 척수 진통 작용 기전에 기여하는 Nitric Oxide)

  • Song, Ho-Kyung;Park, Soo-Seog;Kim, Jung-Tae
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Background: The role of nitric oxide(NO) in analgesia from opioids is controversial. On the one hand, IV morphine analgesia is enhanced by IV injection of NO synthase inhibitors. On the other hand, IV morphine results in increased release of NO in the spinal cord. There have been no behavioral studies examining the interaction between IV morphine and intrathecal injection of drugs which affect NO synthesis. Method: Rats were prepared with chronic lumbar intrathecal catheters and were tested withdrawal latency on the hot plate after 3~5 days of surgery. Antinociception was determinined in response to a heat stimulus to the hind paw before and after IV injection of morphine, 2.5 mg/kg. Twenty minutes after morphine injection, rats received intrathecal injection of saline or the NO synthase inhibitors, L-NMMA or TRIM, the NO scavenger, PTIO, or the NO synthase substrate, L-Arginine. Intrathecal injections, separated by 15 min, were made in each rats and measurements were obtained every 5 min. Result: Mophine produced a 60~70% maximal antinociceptive response to a heat stimulus in all animals for 60 min in control experiments. Intrathecal injection of idazoxane decreased antinociception of IV morphine. The NO synthase inhibitors and the NO scavenger produced dose-dependent decreases in antinociceptive effect of morphine, whereas saline as a control group and L-Arginine as the NO substrate had no effect on antinociception of morphine. Conclusion: The present study supports the evidences that systemic morphine increase the nitrite in cerebrospinal fluid and dorsal horn. These data suggest that the synthesis of NO in the spinal cord may be important to the analgesic effect of IV morphine and increased NO in spinal cord has different action from the supraspinal NO.

  • PDF

Neuroprotective Effect of Phenytoin and Hypothermia on a Spinal Cord Ischemic Injury Model in Rabbits (토끼의 척수 허혈 손상 모델에서 페니토인과 저체온의 신경 보호 효과의 비교)

  • Oh, Sam-Sae;Choe, Ghee-Young;Kim, Won-Gon
    • Journal of Chest Surgery
    • /
    • v.41 no.4
    • /
    • pp.405-416
    • /
    • 2008
  • Background: Spinal cord ischemic injury during thoracic and thoracoabdominal aortic surgeries remains a potentially devastating outcome despite using various methods of protection. Neuronal voltage-dependent sodium channel antagonists are known to provide neuroprotection in cerebral ischemic models. This study was designed to compare the neuroprotective effects of phenytoin with those of hypothermia in a rabbit model of spinal cord ischemia. Material and Method: Spinal cord ischemia was induced in New Zealand white rabbits by means of infrarenal aortic cross clamping for 25 minutes. Four groups of 8 animals each were studied. The control group and the hypothermia group received retrograde infusion of saline only ($22^{\circ}C$, 2 mL/min); the normothermic phenytoin group and the hypothermicphenytoin group received retrograde infusion of 100 mg of phenytoin at different rectal temperatures ($39^{\circ}C$ and $37^{\circ}C$, respectively) during the ischemic period. The neurologic function was assessed at 24 and 72 hours after the operation with using the modified Tarlov criteria. The spinal cords were harvested after the final neurologic examination for histopathological examination to objectively quantify the amount of neuronal damage. Result: No major adverse effects were observed with the retrograde phenytoin infusion during the aortic ischemic period. All the control rabbits became severely paraplegic, Both the phenytoin group and the hypothermia group had a better neurological status than did the control group (p < 0.05). The typical morphological changes that are characteristic of neuronal necrosis in the gray matter of the control animals were demonstrated by means of the histopathological examination, whereas phenytoin or hypothermia prevented or attenuated these necrotic phenomena (p < 0.05). The number of motor neuron cells positive for TUNEL staining was significantly reduced, to a similar extent, in the rabbits treated with phenytoin or hypothermia. Phenytoin and hypothermia had some additive neuroprotective effect, but there was no statistical significance between the two on the neurological and histopathological analysis. Conclusion: The neurological and histopathological analysis consistently demonstrated that both phenytoin and hypothermia may afford significant spinal cord protection to a similar extent during spinal cord ischemia in rabbits, although no significant additive effects were noticed.

Evaluation of Experimentally Induced Lumbar Spinal Cord Injury by Somatosensory Evoked Potentials(SEPs) in Dogs (개에서 Somatosensory Evoked Potentials (SEPs)을 이용한 척수기능장애의 평가)

  • Lee, Joo-Myoung;Jeong, Seong-Mok;Kweon, Oh-Kyeong;Nam, Tchi-Chou
    • Journal of Veterinary Clinics
    • /
    • v.18 no.4
    • /
    • pp.315-323
    • /
    • 2001
  • Changes in somatosensory evoked potentials (SEPs) which accompanied by insertion of foreign body in spinal canal were evaluated with clinical signs and positive contrasted myelography in dogs. Foreign bodies occupied 20∼50% of spinal canal. Foreign bodies occupying about 50% of spinal canal were inserted into the animals of group II and III for 1 week and 2 days, respectively. Foreign bodies occupying about 20% of spinal canal were inserted into the animals of group IV, V, and for 1 week, 2 days, and 8 weeks, respectively. in group I (control group), sham operation (lateral laminectomy) was performed. Group III, IV and V did not severely affect on SEPs latencies and clinical signs. Group VI affects on SEPs latencies but not on clinical signs. After foreign body removal, SEPs latencies showed similar recovery patterns with clinical signs. However, group II induced severe abnormalities in SEPs latencies and clinical signs. In group III, IV and V, thoracic potentials (TN1) were abnormally recorded after foreign body insertion and firstly/normally recorded on the 6th 9.5th and 3.5th day after foreign body (removal following) insertion. In group VI, TN1 was abnormally recorded after foreign body insertion and firstly recorded on the 7.7th day and normally recorded on 34th day after foreign body insertion. In group I, TN1 was not recorded from the 3rd day after foreign body insertion and until the 8th week after foreign body removal. In group I, TN1 was firstly recorded on the 1st day after laminectomy.

  • PDF

Clonidine-induced Inhibition of the Flexion Reflex in the Cat (Clonidine의 굴근반사(屈筋反射) 억제작용(抑制作用))

  • Kwon, Sang-Ok;Koh, Sang-Don;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.21 no.1
    • /
    • pp.67-77
    • /
    • 1987
  • Effect of intravenously injected clonidine on the flexion reflex was studied in 15 decerebrated and spinalized cats. The flexion reflex was elicited by electrical stimulation of the tibial nerve or the common peroneal nerve and it was recorded as single unit activity from filaments of the L6 or L7 ventral roots. In order to obtain the late flexion reflex discharges, $A{\delta}$ and C afferent fibers were stimulated with single or train electrical pulses respectively. The flexion reflex, especially the late component, was markedly inhibited after intravenous administration of clonidine. The clonidine-induced inhibition of the flexion reflex was compared before and after treatment of the animals respectively with yohimbine and naloxone. The inhibitory effect on the flexion reflex of clonidine was not altered by naloxone, a ${\mu}-opioid$ receptor blocker, whereas it was completely blocked by yohimbine, an ${\alpha}_2-adrenergic$ antagonist. These results indicate that clonidine inhibits the flexion reflex through excitation of ${\alpha}_2-adrenoceptors$ even at the spinal cord level.

  • PDF