• Title/Summary/Keyword: Spinal Fixation System

Search Result 18, Processing Time 0.021 seconds

A Study of Biomechanical Simulation Model for Spinal Fusion using Spinal Fixation System (척추경 고정 나사 시스템을 이용한 척추 유합 시술의 생체역학적 분석 모델 연구)

  • Kim, Sung-Min;Yang, In-Chul;Kang, Ho-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • In general, spinal fusion surgery takes pressure off the pain induced nerves, by restoring the alignment of the spine. Therefore spinal fixation system is used to maintain the alignment of spine. In this study, a biomechanical study was performed comparing the SROM(Spinal Range Of Motion) of three types of system such as Rigid, Dynesys, and Fused system to analyze the behavior of spinal fixation system inserted in vertebra. Dynesys system, a flexible posterior stabilization system that provides an alternative to fusion, is designed to preserve inter-segmental kinematics and alleviate loading at the facet joints. In this study, SROM of inter-vertebra with spinal fixation system installed in the virtual vertebra from L4 to S1 is estimated. To compare with spinal fixation system, a simulation was performed by BRG. LifeMOD 2005.5.0 was used to create the human virtual model of spinal fixation system. Through this, each SROM of flexion, extension, lateral bending, and axial rotation of human virtual model was measured. The result demonstrates that the movement of Dynesys system was similar to normal condition through allowing the movement of lumbar.

The Change of Biomechanical Milieu after Removal of mstnnnentation in lrunbar Arthrodesis Stiffness of fusion Mass: Finite Element Analysis (척추 유합술 후, 인접 분절의 스트레스에 대한 척추경 나사못에 대한 영향)

  • Kang, Kyoung-Tak;Chun, Heoung-Jae;Son, Ju-Hyun;Kim, Ho-Joong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.664-667
    • /
    • 2008
  • Since the advent of pedicle screw fixation system, posterior spinal fusion has markedly increased This intemal fixation system has been reported to enhance the fusion rates, thereby becoming very popular procedure in posterior spinal arthrodesis. Although some previous studies have shown the complications of spinal instruments removal, i.e. loss of correction and spinal collapse in scoliosis or long spine fusion patients, there has been no study describing the benefit or complications in lumbar spinal fusion surgery of one or two level. In order to clarify the effect of removal of instruments on mechanical motion profile, we simulated a finite element model of instrumented posterolateral fused lumbar spine model, and investigated the change of mechanical motion profiles after the removal of instrumentation.

  • PDF

The Influence of Fixation Rigidity on Intervertebral Joints - An Experimental Comparison between a Rigid and a Flexible System

  • Kim, Won-Joong;Lee, Sang-Ho;Shin, Song-Woo;Rivard, Charles H.;Coillard, Christine;Rhalmi, Souad
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.364-369
    • /
    • 2005
  • Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

Bone Cement-Augmented Percutaneous Screw Fixation for Malignant Spinal Metastases : Is It Feasible?

  • Kim, Pius;Kim, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.189-194
    • /
    • 2017
  • Objective : We evaluated the validity of bone cement-augmented percutaneous screw fixation for treating malignant spinal metastases. Methods : Between 2011 and 2015, 14 patients (eight men and six women) who underwent bone cement-augmented percutaneous screw fixation for malignant spinal metastases were enrolled in this study. Their life expectancy was considered to be more than one month and less than one year, based on the revised Tokuhashi scoring system. Clinical findings including the back pain scale score, functional outcome, procedure related complications, and survival were assessed preoperatively, postoperatively, and then six months after the procedure. Results : Twelve of the patients (86%) survived up to six months after the procedure. Three required mini-open decompressive laminectomy for severe epidural compression. Bone cement-augmented percutaneous screw fixation was performed one level above, one level below, and at the pathologic level itself. The mean operation time was 60 minutes (45-180) and blood loss was less than 100 mL. Prior to surgery, the mean pain score on the visual analogue scale was 8.8, while one month after the procedure, it had reduced to 3.0; this improvement was maintained until the six-month assessment in the surviving patients. All patients were able to sit within the first two days after surgery, and no patient experienced neurological deterioration at the one-month follow up after the surgery. No patient experienced screw loosening during the six months of follow-up. Asymptomatic cement leakage into the epidural space was observed in two patients, but no major complications were observed. Conclusion : For selected patients with malignant spinal metastases, bone cement-augmented percutaneous screw fixation can provide significant pain relief and improve quality of life.

Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis (Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석)

  • Ahn, Y.H.;Chen, Wen-Ming;Jung, D.Y.;Park, K.W.;Lee, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

Lateral Lumbar Interbody Fusion and in Situ Screw Fixation for Rostral Adjacent Segment Stenosis of the Lumbar Spine

  • Choi, Young Hoon;Kwon, Shin Won;Moon, Jung Hyeon;Kim, Chi Heon;Chung, Chun Kee;Park, Sung Bae;Heo, Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.755-762
    • /
    • 2017
  • Objective : The purpose of this study is to describe the detailed surgical technique and short-term clinical and radiological outcomes of lateral lumbar interbody fusion (LLIF) and in situ lateral screw fixation using a conventional minimally invasive screw fixation system (MISF) for revision surgery to treat rostral lumbar adjacent segment disease. Methods : The medical and radiological records were retrospectively reviewed. The surgery was indicated in 10 consecutive patients with rostral adjacent segment stenosis and instability. After the insertion of the interbody cage, lateral screws were inserted into the cranial and caudal vertebra using the MISF through the same LLIF trajectory. The radiological and clinical outcomes were assessed preoperatively and at 1, 3, 6, and 12 months postoperatively. Results : The median follow-up period was 13 months (range, 3-48 months). Transient sensory changes in the left anterior thigh occurred in 3 patients, and 1 patient experienced subjective weakness; however, these symptoms normalized within 1 week. Back and leg pain were significantly improved (p<0.05). In the radiological analysis, both the segmental angle at the operated segment and anterior disc height were significantly increased. At 6 months postoperatively, solid bony fusion was confirmed in 7 patients. Subsidence and mechanical failure did not occur in any patients. Conclusion : This study demonstrates that LLIF and in situ lateral screw fixation may be an alternative surgical option for rostral lumbar adjacent segment disease.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.

Prediction of Mechanical Behaviors of Bio-mechanical Materials (생체공학용 척추경 나사의 기계적 거동 예측)

  • Park, Joon-Sik;Choi, Jin Hwa;Cho, Myeong-Woo;Choi, Gil-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.72-78
    • /
    • 2004
  • In this paper, mechanical behaviors of developed pedicle screw system, made of bio-mechanical materials(Ti-6Al-4V, Grade 5), ale predicted using FEM analysis. As a first step, morphologic construction of normal Korean spines and surgical operation convenience are considered to design optimum pedicle screw system. In this step, various design variables are considered as design parameters to develop optimized models. As a next step, tension and bending tests are performed to improve the structural performance of the developed system using finite element method. In this step, required Static compression and bending test specifications by ASTM F-04 25 04 01 are applied to understand the bio-mechanical behaviors of the designed spinal implant system under various load types. As the results of this research, it is possible to develop efficient pedicle screw system, having enough rigidity and fixation to stand any spinal damage under allowable stress conditions.

  • PDF