• 제목/요약/키워드: Spin-dependent transport

검색결과 18건 처리시간 0.025초

LARGE MAGNETORESISTANCE OF SPUTTERED BI THIN FILMS AND APPLICATION OF SPIN DEVICE

  • M. H. Jeun;Lee, K. I.;Kim, D. Y.;J. Y. Chang;K. H. Shin;S. H. Han;J. G. Ha;Lee, W. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.66-67
    • /
    • 2003
  • Bismuth (Bi) has been an attractive materials for studying spin dependent transport properties because it shows very large magnetoresistance (MR) resulting from its highly anisotropic Fermi surface, low carrier concentrations, long carrier mean free path 1 and small effective carrier mass m*[1-3]. With all the intriguing properties, difficulty in fabrication of high quality Bi thin films may have prevented extensive application of Bi in magnetic field sensing and spin-injection devices. Previous works found that the surface roughness and small grain size in 100-200 nm of Bi thin film made by evaporation and sputtering are major causes of low MR. Although relatively higher MR in electrodeposited Bi followed by annealing was reported, it still suffers from rough sulfate roughness which is so severs that it is hardly able to make a field sensing and spin-injection device using conventional photolithography process.

  • PDF

SI-BASED MAGNETIC TUNNELING TRANSISTOR WITH HIGH TRANSFER RATIO

  • S. H. Jang;Lee, J. H.;T. Kang;Kim, K. Y.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.24-24
    • /
    • 2003
  • Metallic magnetoelectronic devices have studied intensively and extensively for last decade because of the scientific interest as well as great technological importance. Recently, the scientific activity in spintronics field is extending to the hybrid devices using ferromagnetic/semiconductor heterostructures and to new ferromagnetic semiconductor materials for future devices. In case of the hybrid device, conductivity mismatch problem for metal/semiconductor interface will be able to circumvent when the device operates in ballistic regime. In this respect, spin-valve transistor, first reported by Monsma, is based on spin dependent transport of hot electrons rather than electron near the Fermi energy. Although the spin-valve transistor showed large magnetocurrent ratio more than 300%, but low transfer ratio of the order of 10$\^$-5/ prevents the potential applications. In order to enhance the collector current, we have prepared magnetic tunneling transistor (MTT) with single ferromagnetic base on Si(100) collector by magnetron sputtering process. We have changed the resistance of tunneling emitter and the thickness of baser layer in the MTT structure to increase collector current. The high transfer ratio of 10$\^$-4/ range at bias voltage of more than 1.8 V, collector current of near l ${\mu}$A, and magnetocurrent ratio or 55% in Si-based MTT are obtained at 77K. These results suggest a promising candidate for future spintronic applications.

  • PDF

Spin Dependent Transport Phenomena for Annealed Co46Al19O35 Granular Thin Films

  • Jae-Geun Ha
    • Journal of Magnetics
    • /
    • 제3권4호
    • /
    • pp.127-133
    • /
    • 1998
  • I have overviewed the change in GMR on annealing, in conjunction with the change in microstructure. The Co46Al19O35 granular thin films were annealed at 30$0^{\circ}C$ for various annealing time to change the microstructure. The magnitude of GMR decreases considerably with increasing annealing time, although the size of Co granules estimated from TEM observation show a small change. Parameter fits of magnetization curves and magnetoresistance curves to the Langevin function suggest that large clusters consisting of several small Co granules, which are coupled ferromagnetically, are related with the decrease of GMR on annealing. The temperature dependence of electrical resistivity ($\rho$) shows the relationship of log $\rho$ versus $T^{-1/2}$ for the sample annealed for 10 min., 1 hr. and 6 hrs. However, the sample annealed for 38 hrs. shows the relationship of log $\rho$ versus$ T^{-1/4},$ which represents a significant change in the transport mechanism.

  • PDF

MgO 절연막을 갖는 자기 터널 접합구조에서의 급속 열처리 효과 (Rapid Theraml Annealing Effect on the Magnetic Tunnel Junction with MgO Tunnel Barrier)

  • 민길준;이경일;김태완;장준연
    • 한국자기학회지
    • /
    • 제25권2호
    • /
    • pp.47-51
    • /
    • 2015
  • 이 연구에서는 DC스퍼터링(DC Magnetron Sputtering)방식으로 제작 된 MgO 터널 장벽층을 갖는 자기터널접합을 급속 열처리 방식(Rapid Thermal Annealing)을 이용하여 열처리 공정 중의 구조적, 조성적 변화 및 스핀 수송 특성의 변화를 연구하였다. 본 연구를 통하여 급속 열처리 방식이 기존 일반적인 열처리 방식에 비하여 높은 터널링자기저항비를 얻을 수 있다는 것을 발견하였다. 또한, 열처리 시간의 단축을 통하여 Mn, Ta, Ru 등의 내부물질의 인접한 층으로의 확산을 억제할 수 있다는 것을 알 수 있었다. 유의미한 데이터를 수집하기 위하여 다양한 열처리 온도 조건과 시간조건에서 급속 열처리를 실시 한 후 자기 터널 접합의 전, 자기적 특성을 관찰하였다. 이러한 특성 변화는 향후 보다 우수하고 안정적인 자기적 특성과 열적 안정성을 갖는 자기터널접합 제작을 위해 다양하게 응용될 수 있다고 생각된다.

Size-dependent Optical and Electrical Properties of PbS Quantum Dots

  • Choi, Hye-Kyoung;Kim, Jun-Kwan;Song, Jung-Hoon;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.186-186
    • /
    • 2012
  • This report investigates a new synthetic route and the size-dependent optical and electrical properties of PbS nanocrystal quantum dots (NQDs) in diameters ranging between 1.5 and 6 nm. Particularly we synthesize ultra-small sized PbS NQDs having extreme quantum confinement with 1.5~2.9 nm in diameter (2.58~1.5 eV in first exciton energy) for the first time by adjusting growth temperature and growth time. In this region, the Stokes shift increases as decreasing size, which is testimony to the highly quantum confinement effect of ultra-small sized PbS NQDs. To find out the electrical properties, we fabricate self-assembled films of PbS NQDs using layer by layer (LBL) spin-coating method and replacing the original ligands with oleic acid to short ligands with 1, 2-ethandithiol (EDT) in the course. The use of capping ligands (EDT) allows us to achieve effective electrical transport in the arrays of solution processed PbS NQDs. These high-quality films apply to Schottky solar cell made in an glass/ITO/PbS/LiF/Al structure and thin-film transistor varying the PbS NQDs diameter 1.5~6 nm. We achieve the highest open-circuit voltage (<0.6 V) in Schottky solar cell ever using PbS NQDs with first exciton energy 2.58 eV.

  • PDF

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.