• Title/Summary/Keyword: Spin wave

Search Result 215, Processing Time 0.023 seconds

Annealing Effect of Surface Magnetic Properties in CoTi Thin Films (열처리 효과가 CoTi계 박막의 표면자기특성에 미치는 영향)

  • 김약연;백종성;이성재;임우영;이수형
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.38-43
    • /
    • 1997
  • For amorphous $Co_{1-x}Ti_x$(X=0.13, 0.16, 0.21 at.%) thin films deposited by DC magnetron sputtering method ferromagnetic resonance experiments have been used to investigate the dependence of surface magnetic properties according to annealing temperature (150~225 $^{\circ}C$). Spin wave resonance spectra for all annealing temperatures consist of several volume modes and one(or two) surface mode. It is suggested that both surfaces of the film have a perpendicular hard axis to the film plane(negative surface anisotropy). Also, the surface anisotropy $K_{s2}$ at substrate film interface is varied slowly from -0.11 to -0.25 erg/ $\textrm{cm}^2$ and the surface anisotropy $K_{s1}$ at film-air interface is varied from 0.16 to -0.53 erg/ $\textrm{cm}^2$ with increasing annealing temperature. We conjecture that the variation of surface anisotropy $K_{s1}$ is due to the increase of Co concentration resulted from Ti oxidation for low temperature annealing(150~200 $^{\circ}C$) and the diffusion of Co atoms near the film surfaces for high temperature annealing(225~250 $^{\circ}C$).

  • PDF

Crystallographic and Magnetic Properties of KFeO2 (KFeO2 분말의 제조 및 뫼스바우어 분광학 연구)

  • Moon, Seung-Je;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • The crystallographic and magnetic properties of $KFeO_2$ powder prepared by ball-mill method, have been studied by x-ray diffraction(XRD), $M\"{o}ssbauer$ spectroscopy, and vibrating sample magnetometer(VSM) measurements. The crystal structure of $KFeO_2$ powder at room temperature is determined to be an orthorhombic structure of Pbca with its lattice constants $a_0=5.557{\AA},\;b_0=11.227{\AA},\;c_0=15.890{\AA}$ by Rietveld refinement. $M\"{o}ssbauer$ spectra of $KFeO_2$ were taken at various temperatures ranging from 4.2 to 818 K. The magnetic hyperfine field and isomer shift value at 4.2 K and RT were 519 kOe, 489 kOe and 0.19 mm/s, 0.05 mm/s respectively. The average hyperfine field $H_{hf}(T)$ of the $KFeO_2$ shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.36(T/T_N)^{5/2}$ for $T/T_N$<0.7, indicative of spin-wave excitation.

The Electronic Structure and Magnetism of bcc Rh(001) Surface (체심 입방구조 Rh(001) 표면의 전자구조와 자성)

  • Cho, L.H.;Bialek, B.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.206-210
    • /
    • 2008
  • According to the recent reports the bulk bcc Rh is ferromagnetic with a small difference of energy compared to paramagnetic state. In this study, the electronic structure and magnetism for bcc Rh(001) surface are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. It is found that the surface ferromagnetic state is preferable over the paramagnetic one. For unrelaxed system, the magnetic moment of the surface layer, $0.48{\mu}B$, is slightly increased comparing with the bulk value, $0.41{\mu}B$ while the value of the subsurface layer, $0.23{\mu}B$, is much smaller than the bulk value. The total energy and atomic force calculations show that the surface layer is relaxed downward and the subsurface layer moves upward to reduce the layer distance between the surface and subsurface layers by 7.0 %. The relaxation effect leads to weakening the surface magnetic properties. Specifically, the value of the magnetic moment of the surface atom is decreased to $0.36{\mu}B$. Since the spin polarization of the subsurface layer is only $0.14{\mu}B$, it is concluded that the bcc Rh(001) surface is rather weakly ferromagnetic.

Magnetism and Half-metallicity of Co2TiSn(001) Surfaces: A First-principles Study (Co2TiSn(001) 표면의 자성 및 반쪽금속성에 대한 제일원리연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The electronic structures, magnetism, and half-metallicity of the full-Heusler $Co_2TiSn$(001) surfaces have been investigated by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. We have considered both of the Co atoms terminated(Co-term) and the TiSn atoms terminated(TiSn-term) surfaces. From the calculated density of states, we found that the half-metallicity was destroyed at the surface of the Co-term, while the half-metallicity was retained at the TiSn-term. For the surface of the Co-term, due to the reduced coordination number the occupied minority d-states were shifted to high energy regions and that cross the Fermi level, thus destroy the surface half-metallicity. On the other hand the surface states at the surface of the TiSn-term were located just below the Fermi level, which reduces the minority spin-gap with respect to that of the center layer. The calculated magnetic moment of the surface Co atom for the Co-term was increased by 10 % to 1.16 ${\mu}_B$ with respect to that of the inner-layers, while the magnetic moment of the subsurface Co atom in the TiSn-term has almost same value of the innerlayers(1.03 ${\mu}_B$).

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.