• 제목/요약/키워드: Spin transport

검색결과 126건 처리시간 0.035초

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • 전병선;이상선;황찬용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • 제7권1호
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

Electrical Spin Transport in n-Doped In0.53Ga0.47As Channels

  • Park, Youn-Ho;Koo, Hyun-Cheol;Kim, Kyung-Ho;Kim, Hyung-Jun;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.23-26
    • /
    • 2009
  • Spin injection from a ferromagnet into an n-doped $In_{0.53}Ga_{0.47}As$ channel was electrically detected by a ferromagnetic detector. At T = 20 K, using non-local and local spin-valve measurements, a non-local signal of $2\;{\mu}V$ and a local spin valve signal of 0.041% were observed when the bias current was 1 mA. The band calculation and Shubnikov-de Haas oscillation measurement in a bulk channel showed that the gate controlled spin-orbit interaction was not large enough to control the spin precession but it could be a worthy candidate for a logic device using spin accumulation and diffusion.

Electromagnetic Resonant Tunneling System: Double-Magnetic Barriers

  • Kim, Nammee
    • Applied Science and Convergence Technology
    • /
    • 제23권3호
    • /
    • pp.128-133
    • /
    • 2014
  • We study the ballistic spin transport properties in a two-dimensional electron gas system in the presence of magnetic barriers using a transfer matrix method. We concentrate on the size-effect of the magnetic barriers parallel to a two-dimensional electron gas plane. We calculate the transmission probability of the ballistic spin transport in the magnetic barrier structure while varying the width of the magnetic barriers. It is shown that resonant tunneling oscillation is affected by the width and height of the magnetic barriers sensitively as well as by the inter-spacing of the barriers. We also consider the effect of additional electrostatic modulation on the top of the magnetic barriers, which could enhance the current spin polarization. Because all-semiconductor-based devices are free from the resistance mismatch problem, a resonant tunneling structure using the two-dimensional electron gas system with electric-magnetic modulation would play an important role in future spintronics applications. From the results here, we provide information on the physical parameters of a device to produce well-defined spin-polarized current.

Magnetic Tunnel Junctions with Magnesium Oxide Barriers

  • Nagahama Taro;Moodera Jagadeesh S.
    • Journal of Magnetics
    • /
    • 제11권4호
    • /
    • pp.170-181
    • /
    • 2006
  • Spin dependent tunneling has enormously activated the field of magnetism in general, and in particular spin transport studies, in the past ten years. Thousands of articles related to the subject have appeared with many fundamental results. Importantly, there is great interest in their potential for application. There was another surge of activity in this field since the past five years - created by the theoretical prediction of a large tunnel magnetoresistance that arises due to band symmetry matched coherent tunneling in epitaxial magnetic tunnel junctions with (001) MgO barrier and experimentally well demonstrated. This further development in the field has boosted the excitement in both fundamental science as well as the possibility of application in such as magnetic random access memory, ultra sensitive read heads, biosensors and spin torque diodes. This review is a brief coverage of the field highlighting the literature that deals with magnetic tunnel junctions having epitaxial MgO tunnel barriers.

Spin injection and transport properties of Co/Au/Y$Ba_2$$Cu_3$$O_y$ tunnel junctions

  • Lee, Kiejin;Kim, Sunmi;Ishibashi, Takauki;Cha, Deokjoon
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.70-73
    • /
    • 2001
  • We report the spin injection and transport properties of three terminal devices of Co/Au/$YBa_2$$Cu_3$$O_{y}$(F/N/S) tunnel junctions by injection of spin-polarized quaiparticles using a cobalt ferromagnetic injector. The observed current gain depends on the thickness of Au interlayer and is directly related to the nonequilibrium magnetization due to spin relaxation effects. The tunnel characteristic of a F/N/S tunnel junctions exhibited a zero bias conductance peak (ZBCP). The suppression of the ZBCP was observed due to the suppression of Andreev reflection at the interface, which is due to the spin scattering processes at the interface between a ferromagnetic and a d-wave superconductor.r.

  • PDF

Double Hole Transport Layers Deposited by Spin-coating and Thermal-evaporating for Flexible Organic Light Emitting Diodes

  • Chen, Shin Liang;Wang, Shun Hsi;Juang, Fuh Shyang;Tsai, Yu Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.741-744
    • /
    • 2007
  • The research applied the processes of spin-coating and thermal-evaporating in proper order to deposit the hole transport material N,N'-Bis(naphthalen-1-yl)- N,N'-bis(phenyl)-benzidine (NPB) on the ITO substrate to make flexible organic light emitting diodes (FOLED) with double hole transport layer.

  • PDF

MAGNETOTRANSPORT IN AN N-TYPE DILUTED MAGNETIC SEMICONDUCTOR: (Ga,Mn)N

  • Lee, K. I.;Lee, J. M.;J. Y. Chang;S. H. Han;Lee, W. Y.;M. H. Ham;J. M. Myoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2002년도 동계연구발표회 논문개요집
    • /
    • pp.148-149
    • /
    • 2002
  • In recent years, semiconductor spintronics has been rapidly developing due to potential device applications, in which the spin of charge carriers (electrons or holes) provides novel functionalities to carry signals and process information. Diluted magnetic semiconductors (DMSs) are well known to exhibit intriguing properties such as carrier-mediated ferromagnetism and spin-dependent transport resulting from the coupling between the charge transport states and the magnetic moments (spin) [1-3]. (omitted)

  • PDF

Anomalous superconducting spin-valve effect in NbN/FeN/Cu/FeN/FeMn multilayers

  • Hwang, Tae Jong;Kim, Dong Ho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.23-26
    • /
    • 2017
  • We have studied magnetic and transport properties of NbN/FeN/Cu/FeN/FeMn spin-valve structure. In-plane magnetic moment exhibited typical hysteresis loops of spin valves in the normal state of NbN film at 20 K. On the other hand, the magnetic hysteresis loop in the superconducting state exhibited more complex behavior in which exchange bias provided by antiferrmagnetic FeMn layer to adjacent FeN layer was disturbed by superconductivity. Because of this, the ideal superconducting spin-valve effect was not detected. Instead the stray field originated from unsaturated magnetic states dominated the transport properties of NbN/FeN/Cu/FeN/FeMn multilayer.