• Title/Summary/Keyword: Spin inversion

Search Result 42, Processing Time 0.013 seconds

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

Research Trend of Topological Insulator Materials and Devices (위상절연체 소재 및 소자 기술 개발 동향)

  • W.J. Lee;T.H. Hwang;D.H. Cho;Y.D. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Topological insulators (TIs) emerge as one of the most fascinating and amazing material in physics and electronics. TIs intrinsically possess both gapless conducting surface and insulating internal properties, instead of being only one property such as conducting, semiconducting, and insulating. The conducting surface state of TIs is the consequence of band inversion induced by strong spin-orbit coupling. Combined with broken inversion symmetry, the surface electronic band structure consists of spin helical Dirac cone, which allows spin of carriers governed by the direction of its momentum, and prohibits backscattering of the carriers. It is called by topological surface states (TSS). In this paper, we investigated the TIs materials and their unique properties and denoted the fabrication method of TIs such as deposition and exfoliation techniques. Since it is hard to observe the TSS, we introduced several specialized analysis tools such as angle-resolved photoemission spectroscopy, spin-momentum locking, and weak antilocalization. Finally, we reviewed the various fields to utilize the unique properties of TIs and summarized research trends of their applications.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain (스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구)

  • Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

  • PDF

The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report (복부의 T2강조 영상에서 지방소거기법의최적의 평가)

  • Lee, Da-Hee;Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

The Value of MRI in Diagnosis of Peripheral Nerve Disorders (말초신경질환에서 자기공명영상의 진단적 가치)

  • Lee, Han Young;Lee, Jang Chull;Kim, Il-Man;Lee, Chang-Young;Ikm, Eun;Kim, Dong Won;Yim, Man Bin
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1120-1126
    • /
    • 2001
  • Objective : The development of magnetic resonance neurography(MRN) has made it possible to produce highresolution images of peripheral nerves themselves, as well as associated intraneural and extraneural lesions. We evaluated the clinical application and utility of high-resolution MRN techniques for the diagnosis and treatment of a variety of peripheral nerve disorder(PND)s. Material and Method : MRN images were obtained using T1-weighted spin echo, T2-weighted fast spin echo with fat suppression, and short tau inversion recovery(STIR) fast spin-echo pulse sequences. Fifteen patients were studied, three with brachial plexus tumors, five with chronic entrapment syndromes, and seven with traumatic peripheral lesions. Ten patients underwent surgery. Results : In MRN with STIR sequences of axial and coronal imagings, signals of the peripheral nerves with various lesions were detected as fairly bright signals and were discerned from signals of the uninvolved nerves. Increased signal with proximal swelling and distal flattening of the median nerve were seen in all patients of carpal tunnel syndrome. Among the eight patients with brachial plexus injury or tumors, T2-weighted MRN showed increased signal intensity in involved roots in five, enhanced mass lesions in three, and traumatic pseudomeningocele in three. Other associated MRI findings were adjacent bony signal change, neuroma, root adhesion and denervated muscle atophy with signal change. Conclusion : MRN with high-resolution imaging can be useful in the preoperative evaluation and surgical planning in patients with peripheral nerve lesions.

  • PDF

Shape model and spin state of non-principal axis rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2019
  • The main-belt asteroid (5247) Krylov is known as a Non-Principal Axis (NPA) rotator. However, the shape model and spin state of this asteroid were not revealed. The physical model of an asteroid including spin state and shape is regarded to be important to understand its physical properties and dynamical evolution. Thus, in order to reconstruct the physical model of Kryolv, we applied the light curve inversion method using not only the optical light curves observed with ground-based telescopes in three apparitions during 2006, 2016, and 2017, but also the infrared light curves obtained with the Wide-field Infrared Survey Explorer (WISE) in 2010. We found that it is rotating in Short Axis Mode (SAM) with the rotation and precession periods of 368.71 hr and 67.277 hr, respectively. The orientation of the angular momentum vector is (298°, -58°) in the ecliptic coordinate system. The ratio of moments of inertia of the longest axis to the shortest axis is Ia/Ic = 0.36; the ratio of moments of inertia of the intermediate axis to the shortest axis is Ib/Ic = 0.96. Finally, the excitation level of this asteroid is found to be rather low with a ratio of the rotational kinetic energy to the basic spin state energy as E/E0 ≃ 1.024. We will briefly discuss the possible evolutionary process of Krylov in this presentation.

  • PDF