• 제목/요약/키워드: Spin inversion

검색결과 42건 처리시간 0.031초

T1, T2강조영상, FLAIR영상의 임상 적용 (T1-, T2-weighted, and FLAIR Imaging: Clinical Application)

  • 김재형
    • Investigative Magnetic Resonance Imaging
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2009
  • T1, T2강조영상, FLAIR (fluid attenuated inversion recovery) 영상기법은 뇌 MRI의 가장 기본적인 영상기법들이다. T1강조영상은 짧은 TR과 짧은 TE를 이용한 스핀에코 기법으로서 조직의 T1이완시간의 차이를 신호 차이로 반영하는 기법이다. 짧은 TR을 사용하면 조직 간에 종축 자기화의 회복 정도가 크게 차이나게 되며 이를 신호에 반영하는 것이다. T2강조영상은 긴 TR과 긴 TE를 이용한 스핀에코 기법으로서 조직의 T2이완시간의 차이를 신호 차이로 반영하는 기법이다. 긴 TE을 사용하면 조직 간에 횡축 자기화의 붕괴가 크게 차이나게 되며 이를 신호에 반영하는 것이다. FLAIR는 180도 반전펄스를 먼저 가하는 반전회복 (inversion recovery) 기법의 일종으로서 뇌척수액의 신호를 억제하기 위하여 2500 msec 정도의 반전시간을 적용한다.

  • PDF

위상절연체 소재 및 소자 기술 개발 동향 (Research Trend of Topological Insulator Materials and Devices)

  • 이우정;황태하;조대형;정용덕
    • 전자통신동향분석
    • /
    • 제38권1호
    • /
    • pp.17-25
    • /
    • 2023
  • Topological insulators (TIs) emerge as one of the most fascinating and amazing material in physics and electronics. TIs intrinsically possess both gapless conducting surface and insulating internal properties, instead of being only one property such as conducting, semiconducting, and insulating. The conducting surface state of TIs is the consequence of band inversion induced by strong spin-orbit coupling. Combined with broken inversion symmetry, the surface electronic band structure consists of spin helical Dirac cone, which allows spin of carriers governed by the direction of its momentum, and prohibits backscattering of the carriers. It is called by topological surface states (TSS). In this paper, we investigated the TIs materials and their unique properties and denoted the fabrication method of TIs such as deposition and exfoliation techniques. Since it is hard to observe the TSS, we introduced several specialized analysis tools such as angle-resolved photoemission spectroscopy, spin-momentum locking, and weak antilocalization. Finally, we reviewed the various fields to utilize the unique properties of TIs and summarized research trends of their applications.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구 (Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain)

  • 장건호
    • 한국의학물리학회지:의학물리
    • /
    • 제18권1호
    • /
    • pp.35-41
    • /
    • 2007
  • 본 연구의 목적은 비침습적 동맥스핀라벨링(arterial spin labeling) 자기공명영상을 이용하여 다편(multislice) 뇌 관류영상(perfusion-weighted Images)을 얻을 수 있는 최적화 방법을 연구하는 데 목적이 있다. 본 연구에서는 세 가지 인자를 최적화하는 데 초점을 두었다. 첫째, 뇌로 흘러 들어오는 혈액을 최적으로 라벨링할 수 있는 펄스를 만드는 것이다. 시뮬레이션 결과 900도의 각을 이루는 반전펄스(adiabatic hyperbolic secant Inversion pulse)는 반전을 효과적으로 할 수 있고 반전을 이루는 형태가 직각에 가깝게 할 수 있는 최적이었다. 둘째, 영상을 얻고 난 후에 계속하여 남아 있는 자화(residual magnetization)을 최소화하는 것이다. 이를 최소화하기 위해서는 포화 펄스(saturation pulses)와 자화를 손상시키는 자장(speller gradients)을 동시에 사용하는 것이 최상의 방법임을 알았다. 마지막으로, 라벨링하는 영역과 영상을 얻는 영역 사이의 거리를 최소화할 수 있는 방법을 연구하였다. 두 영역 간의 최소 거리는 약 20 mm 정도가 최적임을 발견하였다. 위에서 얻은 최적화된 인자들을 바탕으로 13명의 정상인의 뇌에서 관류 영상을 얻은 결과 매우 좋은 대조도의 영상을 얻을 수 있었다.

  • PDF

복부의 T2강조 영상에서 지방소거기법의최적의 평가 (The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report)

  • 이다희;구은회
    • 대한디지털의료영상학회논문지
    • /
    • 제14권1호
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

말초신경질환에서 자기공명영상의 진단적 가치 (The Value of MRI in Diagnosis of Peripheral Nerve Disorders)

  • 이한영;이장철;김일만;이창영;손은익;김동원;임만빈
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권9호
    • /
    • pp.1120-1126
    • /
    • 2001
  • Objective : The development of magnetic resonance neurography(MRN) has made it possible to produce highresolution images of peripheral nerves themselves, as well as associated intraneural and extraneural lesions. We evaluated the clinical application and utility of high-resolution MRN techniques for the diagnosis and treatment of a variety of peripheral nerve disorder(PND)s. Material and Method : MRN images were obtained using T1-weighted spin echo, T2-weighted fast spin echo with fat suppression, and short tau inversion recovery(STIR) fast spin-echo pulse sequences. Fifteen patients were studied, three with brachial plexus tumors, five with chronic entrapment syndromes, and seven with traumatic peripheral lesions. Ten patients underwent surgery. Results : In MRN with STIR sequences of axial and coronal imagings, signals of the peripheral nerves with various lesions were detected as fairly bright signals and were discerned from signals of the uninvolved nerves. Increased signal with proximal swelling and distal flattening of the median nerve were seen in all patients of carpal tunnel syndrome. Among the eight patients with brachial plexus injury or tumors, T2-weighted MRN showed increased signal intensity in involved roots in five, enhanced mass lesions in three, and traumatic pseudomeningocele in three. Other associated MRI findings were adjacent bony signal change, neuroma, root adhesion and denervated muscle atophy with signal change. Conclusion : MRN with high-resolution imaging can be useful in the preoperative evaluation and surgical planning in patients with peripheral nerve lesions.

  • PDF

Shape model and spin state of non-principal axis rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.45.2-45.2
    • /
    • 2019
  • The main-belt asteroid (5247) Krylov is known as a Non-Principal Axis (NPA) rotator. However, the shape model and spin state of this asteroid were not revealed. The physical model of an asteroid including spin state and shape is regarded to be important to understand its physical properties and dynamical evolution. Thus, in order to reconstruct the physical model of Kryolv, we applied the light curve inversion method using not only the optical light curves observed with ground-based telescopes in three apparitions during 2006, 2016, and 2017, but also the infrared light curves obtained with the Wide-field Infrared Survey Explorer (WISE) in 2010. We found that it is rotating in Short Axis Mode (SAM) with the rotation and precession periods of 368.71 hr and 67.277 hr, respectively. The orientation of the angular momentum vector is (298°, -58°) in the ecliptic coordinate system. The ratio of moments of inertia of the longest axis to the shortest axis is Ia/Ic = 0.36; the ratio of moments of inertia of the intermediate axis to the shortest axis is Ib/Ic = 0.96. Finally, the excitation level of this asteroid is found to be rather low with a ratio of the rotational kinetic energy to the basic spin state energy as E/E0 ≃ 1.024. We will briefly discuss the possible evolutionary process of Krylov in this presentation.

  • PDF