• 제목/요약/키워드: Spin coupling

검색결과 225건 처리시간 0.027초

Evidence of spin-phonon coupling in La2NiMnO6 double perovskite

  • Nasir, Mohammad;Ahmed, Ateeq;Park, Hee Jung;Sen, Somaditya
    • 한국결정성장학회지
    • /
    • 제31권3호
    • /
    • pp.112-115
    • /
    • 2021
  • Herein, a correlation between B-site cation order and spin-phonon coupling in La2NiMnO6 double perovskite has been investigated. Raman spectra of La2NiMnO6 double perovskite annealed at 950 and 1400℃ have been measured in the 140-598 K range. A substantial softening of the phonon modes has been observed below the Curie temperature, which emphasized the presence of the spin-phonon coupling in the system. The spin-phonon coupling was found to be stronger in relatively more ordered La2NiMnO6 double perovskite. Thus, the magnitude of spin-phonon coupling was influenced by the Ni/Mn cation order.

Effective Valence Shell Hamiltonian Calculations on Spin-Orbit Coupling of SiH, SiH+, and SiH2+

  • Chang, Ye-Won;Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.723-727
    • /
    • 2003
  • Recently the ab initio effective valence shell Hamiltonian method $H^v$ has been extended to treat spin-orbit coupling in atoms or molecules. The quasidegenerate many-body perturbation theory based $H^v$ method has an advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The new spin-orbit $H^v$ method is applied to calculating the fine structure splittings of the valence states of SiH, $SiH^+$, and $SiH^{2+}$ not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement with experiment and the few available ab initio computations. The ordering of fine structure levels of the bound and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory is available, is predicted.

리간드의 Spin-Orbit Coupling이 작은 스핀팔면체 Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) 및 Ni(Ⅱ) 착물의 Zero-Field Splitting에 미치는 영향 (The Effect of the Ligand's Spin-Orbit Coupling on the Zero-Field Splitting in the Low Spin Octahedral Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) and Ni(Ⅱ) Complexes)

  • 안상운;이기학
    • 대한화학회지
    • /
    • 제23권2호
    • /
    • pp.65-74
    • /
    • 1979
  • 팔면체$ [Ti(Ⅲ)A_3B_3]$, $ [V(Ⅲ)A_3B_3]$, $ [Fe(Ⅲ)A_3B_3]$$ [Ni(Ⅱ)A_3B_3]$ 형태 착물의 바닥상태에 대한 리간드 궤도함수의 spin-orbit coupling의 영향을 고찰하여 보았다. 리간드 궤도함수의 spin-orbit coupling이 바닥상태의 파동함수에는 영향을 주지 않았으나 에너지 준위의 분열에는 영향을 주었으며, 그 크기는 Ti(Ⅲ) > V(Ⅲ) > Fe(Ⅲ)의 순서로 감소하였다

  • PDF

Suppression of Spin Dephasing in a Two-Dimensional Electron Gas with a Quantum Point Contact

  • Jeong, Jae-Seung;Lee, Hyun-Woo
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.7-11
    • /
    • 2010
  • Spin-orbit coupling (SOC) is a source of strong spin dephasing in two- and three-dimensional semiconducting systems. We report that spin dephasing in a two-dimensional electron gas can be suppressed by introducing a quantum point contact. Surprisingly, this suppression was not limited to the vicinity of the contact but extended to the entire two-dimensional electron gas. This facilitates the electrical control of the spin degree of freedom in a two-dimensional electron gas through spin-orbit coupling.

Spin-Rotational Relaxation of a Nuclear Spin on an Internal Rotor

  • Jo-Woong Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권1호
    • /
    • pp.48-54
    • /
    • 1983
  • A magnetic nucleus located on an internal rotor can interact with magnetic fields arising from end-over-end molecular rotation as well as internal rotation. In this paper the expressions for spin-rotational relaxation times, $T_{1.SR}\;and\;T_{2.SR}$, are derived for such nucleus with the anisotropy of molecular rotation explicitly taken into consideration. The derived expressions are shown to be composed of two parts, the contribution from spin-overall-rotation coupling and that from spin-internal-rotation coupling. Some remarks on the use of derived expressions are also provided.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

內部廻轉存在時의 多原子分子에서의 스핀-廻轉相互作用 (Spin-Rotation Interaction in Polyatomic Molecules in the Presence of Internal Rotation)

  • 이조웅
    • 대한화학회지
    • /
    • 제20권5호
    • /
    • pp.364-373
    • /
    • 1976
  • 多原子分子內의 內部廻轉子上에 있는 磁氣核은 分子의 全體廻轉으로 因하여 생기는 磁氣場뿐만 아니라 內部廻轉에 基因하는 磁氣場과도 相互作用할 수 있다. 이 論文에서는 多原子分子內의 內部廻轉子上에 있는 核스핀에 對한 스핀-廻轉相互作用 Hamiltonian을 誘導하였다. 誘導된 Hamiltonian은 스핀과 全體廻轉間의 相互作用을 나타내는 部分 및 스핀과 內部廻轉間의 相互作用을 나타내는 部分과의 合으로 이루어져 있음을 밝혔다. 스핀-廻轉相互作用 tensor와 磁氣的 가리움效果 間의 關係도 또한 調査하였다.

  • PDF

IrMn 스핀필터 스페큘라 스핀밸브의 자기저항 특성 (Magnetoresistance of IrMn-Based Spin Filter Specular Spin Valves)

  • 황재연;이장로
    • 한국자기학회지
    • /
    • 제14권6호
    • /
    • pp.236-239
    • /
    • 2004
  • 미소 자유자성층에 인접한 스핀필터층 (SFL; spin filter layer)을 갖는 Ta3/NiFe2/IrMn7/CoFe1/(NOL1)/CoFe2/Cu 1.8/CoFe( $T_{f}$)/Cu( $t_{SF}$ )/(NOL2)/Ta3.5 (두께단위 nm) 구조의 스페큘라 스핀밸브 (SSV; specular spin valve)를 마그네트론 스퍼터링 장치를 사용하여 제작하였다. 반강자성체 I $r_{22}$M $n_{78}$을 속박층으로 한 스핀필터 스페큘라 스핀밸브 (SFSSV; spin filter specular spin valve) 박막에 대하여 자유자성층의 두께 ( $t_{F}$)와 SFL의 두께 ( $t_{SF}$ )가 각각 1.5nm일 때 극대 자기저항 (MR; magnetoresistance)비 11.9%를 얻었으며, $t_{SF}$ 가 1.0nm으로 감소하여도 11%이상의 MR비를 유지하였다. 이것은 나노산화층 (NOL; nano-oxide layer)에 의한 스페큘라 전자와 SFL에 의한 전류분류효과의 증가 때문이다. 또한, 자유자성층과 피속박층 사이의 층간결합장 ( $H_{int}$; interlayer coupling field)은 RKKY력과 정자기결합력으로 설명할 수 있다. 자유자성층의 보자력 ( $H_{cf}$ ; coercivity of the free layer)은 기존의 스핀밸브 (TSV; traditional spin valve)에 비해 현저히 감소했으며, $t_{F}$가 1nm에서 4nm로 변하여도 4 Oe이하의 값을 유지하였다. 따라서 SFL의 삽입으로 자유자성층의 연자성 특성을 떨어뜨리지 않으면서 자유자성층 두께의 감소와 MR비의 향상을 가능하게 하였다.

Spin Exchange Coupling in Dimethoxo-Bridged Dichromium(III) Complexes: A Density Functional Theory Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.963-968
    • /
    • 2008
  • For the [$Cr_2(H_2tmp)_2Cl_4$] compound, simplified models with two bridging methoxo ligands have been studied. The influence of the bridging Cr-O-Cr bond angles on the exchange coupling between metal atoms in the model compound has been analyzed by means of density functional calculations with the broken-symmetry approach. Coupling constant calculated for the full structure is in good agreement with the experimentally reported value, confirming the validity of the computational strategy used in this work to predict the exchange coupling in a family of related dinuclear Cr(III) compounds. The calculations indicate a good correlation between the calculated coupling constant and the sum of the squared energy gap of three pairs of metal $t_{2g}$ OMSOs with a limited variation of the Cr-O-Cr angle. The spin density distribution and the mechanism of magnetic coupling interactions are discussed.