• Title/Summary/Keyword: Spin coupling

Search Result 225, Processing Time 0.022 seconds

Evidence of spin-phonon coupling in La2NiMnO6 double perovskite

  • Nasir, Mohammad;Ahmed, Ateeq;Park, Hee Jung;Sen, Somaditya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.112-115
    • /
    • 2021
  • Herein, a correlation between B-site cation order and spin-phonon coupling in La2NiMnO6 double perovskite has been investigated. Raman spectra of La2NiMnO6 double perovskite annealed at 950 and 1400℃ have been measured in the 140-598 K range. A substantial softening of the phonon modes has been observed below the Curie temperature, which emphasized the presence of the spin-phonon coupling in the system. The spin-phonon coupling was found to be stronger in relatively more ordered La2NiMnO6 double perovskite. Thus, the magnitude of spin-phonon coupling was influenced by the Ni/Mn cation order.

Effective Valence Shell Hamiltonian Calculations on Spin-Orbit Coupling of SiH, SiH+, and SiH2+

  • Chang, Ye-Won;Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.723-727
    • /
    • 2003
  • Recently the ab initio effective valence shell Hamiltonian method $H^v$ has been extended to treat spin-orbit coupling in atoms or molecules. The quasidegenerate many-body perturbation theory based $H^v$ method has an advantage of determining the spin-orbit coupling energies of all valence states for both the neutral species and its ions with a similar accuracy from a single computation of the effective spin-orbit coupling operator. The new spin-orbit $H^v$ method is applied to calculating the fine structure splittings of the valence states of SiH, $SiH^+$, and $SiH^{2+}$ not only to assess the accuracy of the method but also to investigate the spin-orbit interaction of highly excited states of SiH species. The computed spin-orbit splittings for ground states are in good agreement with experiment and the few available ab initio computations. The ordering of fine structure levels of the bound and quasi-bound spin-orbit coupled valence states of SiH and its ions, for which neither experiment nor theory is available, is predicted.

The Effect of the Ligand's Spin-Orbit Coupling on the Zero-Field Splitting in the Low Spin Octahedral Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) and Ni(Ⅱ) Complexes (리간드의 Spin-Orbit Coupling이 작은 스핀팔면체 Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) 및 Ni(Ⅱ) 착물의 Zero-Field Splitting에 미치는 영향)

  • Ahn Sangwoon;Lee Kee Hag
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.65-74
    • /
    • 1979
  • An effect of the spin-orbit coupling interaction of ligand orbitals on the ground state for octahedral $[Ti(Ⅲ)A_3B_3]$, $ [V(Ⅲ)A_3B_3]$, $ [Fe(Ⅲ)A_3B_3]$ and $ [Ni(Ⅱ)A_3B_3]$ type complexes has been investigated in this work, applying the degenerate perturbation theory. The wave functions are not affected but the energy level splitting for the ground state of these complexes by the spin-orbit coupling interaction of ligand orbitals. The extent of effect on the energy level splitting for the ground state is decreased in order Ti(Ⅲ) > V(Ⅲ) > Fe(Ⅲ).

  • PDF

Suppression of Spin Dephasing in a Two-Dimensional Electron Gas with a Quantum Point Contact

  • Jeong, Jae-Seung;Lee, Hyun-Woo
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Spin-orbit coupling (SOC) is a source of strong spin dephasing in two- and three-dimensional semiconducting systems. We report that spin dephasing in a two-dimensional electron gas can be suppressed by introducing a quantum point contact. Surprisingly, this suppression was not limited to the vicinity of the contact but extended to the entire two-dimensional electron gas. This facilitates the electrical control of the spin degree of freedom in a two-dimensional electron gas through spin-orbit coupling.

Spin-Rotational Relaxation of a Nuclear Spin on an Internal Rotor

  • Jo-Woong Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1983
  • A magnetic nucleus located on an internal rotor can interact with magnetic fields arising from end-over-end molecular rotation as well as internal rotation. In this paper the expressions for spin-rotational relaxation times, $T_{1.SR}\;and\;T_{2.SR}$, are derived for such nucleus with the anisotropy of molecular rotation explicitly taken into consideration. The derived expressions are shown to be composed of two parts, the contribution from spin-overall-rotation coupling and that from spin-internal-rotation coupling. Some remarks on the use of derived expressions are also provided.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

Spin-Rotation Interaction in Polyatomic Molecules in the Presence of Internal Rotation (內部廻轉存在時의 多原子分子에서의 스핀-廻轉相互作用)

  • Lee Jo W.
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.364-373
    • /
    • 1976
  • A magnetic nucleus located on an internal rotor in a polyatomic molecule can interact with the magnetic fields arising from internal rotation as well as end-over-end molecular rotation. In this paper the spin-rotation coupling Hamiltonian for a nuclear spin on a symmetrical internal rotor in a polyatomic molecule is derived. The derived spin-rotation Hamiltonian turns out to be composed of the two parts: the spin-over-all-rotation interaction and the spin-internal-rotation interaction. The relation between the spin-rotation coupling tensor and the magnetic shielding effect is also investigated.

  • PDF

Magnetoresistance of IrMn-Based Spin Filter Specular Spin Valves (IrMn 스핀필터 스페큘라 스핀밸브의 자기저항 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.236-239
    • /
    • 2004
  • We studied the specular spin valve (SSV) having the spin filter layer (SFL) in contact with the ultrathin free layer composed of Ta3/NiFe2/IrMn7/CoFel/(NOLl)/CoFe2/Cu1.8/CoFe( $t_{F}$)/Cu( $t_{SF}$ )/(NOL2)/Ta3.5 (in nm) by the magnetron sputtering system. For this antiferromagnetic I $r_{22}$M $n_{78}$-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness ( $t_{F}$) and the SFL thickness ( $t_{SF}$ ) were 1.5 nm, and the MR ratio higher than 11% was maintained even when the $t_{F}$ was reduced to 1.0 nm. It was due to increase of specular electron by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field ( $H_{int}$) between free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer ( $H_{cf}$ ) was significantly reduced as compared to the traditional spin valve (TSV), and was remained as low as 4 Oe when the $t_{F}$ varied from 1 nm to 4 urn. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

Spin Exchange Coupling in Dimethoxo-Bridged Dichromium(III) Complexes: A Density Functional Theory Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.963-968
    • /
    • 2008
  • For the [$Cr_2(H_2tmp)_2Cl_4$] compound, simplified models with two bridging methoxo ligands have been studied. The influence of the bridging Cr-O-Cr bond angles on the exchange coupling between metal atoms in the model compound has been analyzed by means of density functional calculations with the broken-symmetry approach. Coupling constant calculated for the full structure is in good agreement with the experimentally reported value, confirming the validity of the computational strategy used in this work to predict the exchange coupling in a family of related dinuclear Cr(III) compounds. The calculations indicate a good correlation between the calculated coupling constant and the sum of the squared energy gap of three pairs of metal $t_{2g}$ OMSOs with a limited variation of the Cr-O-Cr angle. The spin density distribution and the mechanism of magnetic coupling interactions are discussed.