• Title/Summary/Keyword: Spill valve

Search Result 4, Processing Time 0.05 seconds

A Study on Restoration Technology of Unit Injector Spill Valve for Injection System of Commercial Diesel Engine (상용차 디젤의 연료분사장치 유닛 인젝터 핵심부품인 스필 밸브의 성능 복원 관한 연구)

  • Lee, Chunggeun;Lee, Jeongho;Lee, Daeyup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2017
  • Restorations of automotive parts have been done ever since the first vehicle was produced. Because the most expensive parts of a vehicle are in the engine system, there have been various restoration methods developed for engine parts. In the case of commercial diesel engines, the fuel injection device is a key and expensive component. It also has a significant effect on vehicle performance. In particular, reduced engine power and increased exhaust gas emissions may result from mechanical damage due to abrasion of the spill valve in the fuel injection system of a diesel engine. In this paper, restoration techniques for damaged parts are applied to restore the abrasion of a spill valve of fuel injection, also called as the "unit injector", of commercial diesel engines. In order to recover the damage, optimized polishing techniques using hard-metal and coating processes are applied. To evaluate restoration techniques for the spill valve, performance and durability tests are performed on a test bench.

A Study on the Prevention of Spill of Fuel Oils and Lubricating Oils for Sunken Ships

  • Han, Won-Heui;Ju, Hae-Ji
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.309-314
    • /
    • 2015
  • A sunken ship often involves an oil spill. This paper was carried out to minimize environmental and cost damages stemming from oil spil of sunken shipl. Through the analysis of both the standards of the oil tank system and installation, we have identified potential oil spill sites and proposed a remedy of prevention. The result of study, the air pipes of the oil tank are a vulnerable point for oil spill. Also, the remote control devices of emergency shut-off valve have poor accessibility at abandon ship, making it difficult to shut off the emergency shut-off valve. Thus, we propose the addition of a remote quick closing valve in the air pipe and the building of a central control system.

Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor (전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발)

  • Lee, Chang Joo;Ha, Jong Woo;Choi, Deok Su;Kim, Hak Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF