• Title/Summary/Keyword: Spherical silica

Search Result 135, Processing Time 0.034 seconds

Synthesis of Tetramethylorthosilicate (TMOS) and Silica Nanopowder from the Waste Silicon Sludge (폐(廢)실리콘슬러지로부터 TMOS 및 실리카 나노분말(粉末) 제조(製造))

  • Jang, Hee-Dong;Chang, Han-Kwon;Cho, Kuk;Kil, Dae-Sup
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • Tetramethylorthosilicate (TMOS) and silica nanopowder were synthesized from the waste silicon sludge containing 15% weight of silicon powder. TMOS, a precursor of silica nanopowder, was firstly prepared from the waste silicon sludge by catalytic chemical reaction. The maximum recovery of the TMOS was 100% after 5 hrs regardless of reaction temperature above $130^{\circ}C$. But the initial reaction rate became faster while the reaction temperature was higher than $150^{\circ}C$. As the methanol feedrate Increased from 0.8 ml/min to 1.4 ml/min, the yield of reaction was not varied after 3 hrs. Then, silica nanopowder was synthesized from the synthesized TMOS by flame spray pyrolysis. The morphology of as-prepared silica nanopowder was spherical and non-aggregated. The average particle diameters ranged from 9 nm to 30 nm and were in proportional to the precursor feed rate, and precursor concentration.

Preparation and Surface treatment of Spherical $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor

  • Seo, Kyoung-Soo;Lee, Dae-Won;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1079-1082
    • /
    • 2004
  • Dense $BaMgAl_{10}O_{17}:Eu^{2+}$ phosphor particles with a spherical shape have been synthesized through spray pyrolysis method using basic aluminum nitrate precursor as a spray solution. Also, a thin layer of silica on the surface of $BaMgAl_{10}O_{17}:Eu^{2+}$ particles were coated by hydrolysis reaction of alkoxide sources with the particles. The correlation between PL intensity and surface treatment by coating for the dense $BaMgAl_{10}O_{17}:Eu^{2+}$ particles have been investigated.

  • PDF

A New Model for the Analysis of Non-spherical Particle Growth Using the Sectional Method (구간해석방법을 통한 새로운 비구형 입자성장해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.416-421
    • /
    • 2000
  • We have developed a simple model for describing the non-spherical particle growth phenomena using modified 1-dimensional sectional method. In this model, we solve simultaneously particle volume and surface area conservation sectional equations which consider particles' irregularities. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. We compared this model with a simple monodisperse-assumed model and more rigorous two dimensional sectional model. For the comparison, we simulated silica and titania particle formation and growth in a constant temperature reactor environment. This new model shows a good agreement with the detailed two dimensional sectional model in total number concentration, primary particle size. The present model can also successfully predict particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

  • PDF

Ethylene Polymerization Using (n-BuCp)$_{2}ZrCl_{2}$ Catalyst Activated with a Cross-linked MAO-Supported Cocatalyst

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • A new type of cross-linked methylaluminoxane (MAO)-supported cocatalyst has been prepared by the reaction of a soluble MAO and a cross-liking agent such as an aromatic diamine compound. The cross-linked MAO-supported cocatalyst was used for the polymerization of ethylene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride, (n-BuCp)$_2$ZrCl$_2$. The catalyst activity of (n-BuCp)$_2$ZrCl$_2$ cocatalyzed with the new supported cocatalyst was higher than that of the commercial silica-supported MAO (SMAO) cocatalyst. The molecular weight and the bulk density of the polyethylene produced by using the new supported cocatalyst were slightly higher than those of polyethylene synthesized using commercial SMAO. The resulting polyethylene particles possess spherical morphologies with very few fine particles.

Synthesis of Monodisperse Spherical SiO2 and Self-Assembly for Photonic Crystals

  • Lee, Byung-Kee;Jung, Young-Hwa;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.472-477
    • /
    • 2009
  • Monodisperse spherical $SiO_2$ particles of various sizes ($\sim$350 nm and $\sim$800 nm) and size distributions were synthesized from TEOS and MTMS. The particle size and size distribution were controlled by changing the volume ratio of water to ethanol and the reaction temperature. Narrow-sized $SiO_2$ particles with $\sim$3% size distribution were obtained. Self-assembly of the $SiO_2$ particles for photonic crystals were performed by the solvent evaporation method. The number of ordered $SiO_2$ layers can be controlled by changing the amount of the dispersed $SiO_2$ volume fraction in the solvent.

A New Model for the Analysis of Non-Spherical Particle Growth (새로운 비구형 입자 성장 해석 모델)

  • Jeong, Jae-In;Choi, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.1020-1027
    • /
    • 2000
  • A simple model for describing the non-spherical particle growth phenomena has been developed. In this model, we solve simultaneously particle volume and surface area conservation sectional equations that consider particles' non-sphericity. From the correlation between two conserved properties of sections, we can predict the evolution of the aggregates' morphology. This model was compared with a simple monodisperse-assumed model and more rigorous two-dimensional sectional model. For comparison, formation and growth of silica particles have been simulated in a constant temperature reactor environment. This new model showed good agreement with the detailed two-dimensional sectional model in total number concentration and primary particle size. The present model successfully predicted particle size distribution and morphology without costing very heavy computation load and memory needed for the analysis of two dimensional aerosol dynamics.

fabrication of Ceramic Tape By Ultrasonic Spray (초음파 분무를 이용한 세라믹 테이프의 성형)

  • 윤정한;박양수;심수만;이해원
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.625-631
    • /
    • 1999
  • Ceramic tapes were fabricated by ultrasonically spraying slurries of monodispersed spherical and alumina powders. Effects of slurry compositions on tape forming were investigated. A relatively fast rate of solvent evaporation caused pores and cracks to be formed. A good chemical affinity between solvent and binder gave rise to binder separation resulting in inhomogeneous distribution of binder. Defect-free silica tapes with uniform distribution of particle packing and the binder were obtained from the solvent having a low chemical affinity and a slow evaporation rate and containing appropriate amounts of the binder and the plasticizer. Tape thickness could be controlled by adjusting solids loadings and slurry feed rates. It was possible to fabricate a tape in 15 $\mu\textrm{m}$ thickness from 7 vol% alumina slurry.

  • PDF

Nonlinear Optical Properties and Photoluminescence of CuCl Nanocrystals Embedded in Silica Glass

  • 이민영
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.126-129
    • /
    • 1995
  • Linear and nonlinear optical properties of CuCl nanocrystals in silica glass have been studied using low temperature absorption, degenerate four wave mixing (DFWM), and time-resolved photoluminescence spectroscopy. Assuming a spherical shape, effective radius of the CuCl quantum dots was estimated to be 2.5 nm, which is obtained from low temperature absorption data. The DFWM experiment was performed in 380-386 nm wavelength region, and the diffracted signal was measured as a function of wavelength with 1.0 nm interval. Time-resolved photoluminescence measurement was also carried out at 77 K to obtain the time response of CuCl nanocrystals. The experimental results on the large third order nonlinear optical of CuCl quantum dots are explained in terms of crystal size and oscillator strength of quantum spheres.

Direct synthesis of Na-kenyaite from amorphous silica (무정형 실리카로부터 Na-kenyaite의 직접합성)

  • 권오윤;박경원;백우현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.70-73
    • /
    • 1999
  • Amorphous silica was hydrothermally reacted for 48~120h at $170~180^{\circ}C$ in molar ratios of $SiO_{2}/(NaOH+Na_{2}CO_{3})=2~20\;and\;H_{2}O/(NaOH+Na_{2}CO_{3})=200~250$. Na-kenyaite nuclei were formed directly from amorphous silica without formation of Na-magadiite nuclei in wide range with $SiO_{2}/(NaOH+Na_{2}CO_{3})=3~20$. Above $SiO_{2}/(NaOH+Na_{2}CO_{3})=10$, Na-kenyaite always produced with a residual amorphous silica. Well-crystallized Na-kenyaite without residual amorphous silica were obtained in the range of $SiO_{2}/(NaOH+Na_{2}CO_{3})=3~10$. Morphology of Na-kenyaite exhibited that a large spherical and loosely packed aggregates changed into the smaller and individual platelets according to increase of reaction time.

  • PDF