• 제목/요약/키워드: Spherical sensor

검색결과 75건 처리시간 0.028초

작업조건에 따른 공작기계의 열변형 특성 해석 보정 (Characteristics Analysis and Compensation of Thermal Deformation for Machine Tools with respect to Operating Conditions)

  • 이재종;최대봉;박현구;곽성조
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.70-75
    • /
    • 2001
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindel unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball arti-fact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

A Practical Approach to Mass Estimation of Loose Parts

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.274-277
    • /
    • 1999
  • This paper is concerned with estimating the mass of a loose part in the steam generator of a nuclear power plant. Although there is the basic principle known as “Hertz Theory”for estimating mass and energy of a spherical part impacted on an infinite flat plate, the theory is not directly applicable because real plants do not comply with the underlying ideal assumptions. (Say, the steam generator is of a cylindrical and hemisphere shape.) In this work, a practical method is developed based on the basic theory and considering amplitude and energy attenuation effects. Actually, the impact waves propagating along the plate to the sensor locations become significantly different in shape and frequency spectrum from the original waveform due to the plate and surrounding conditions, distance attenuation and damping loss. To show the validity of the present mass estimation algorithm, it has been applied to the mock-up impact test data and also to real plant data. The results show better performance comparing to the conventional Hertz schemes.

  • PDF

동작인식을 이용한 탁구 스윙 분석 (Analysis of Table Tennis Swing using Action Recognition)

  • 허건;하종은
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we present an algorithm for the analysis of poses while playing table-tennis using action recognition. We use Kinect as the 3D sensor and 3D skeleton data provided by Kinect for further processing. We adopt a spherical coordinate system and feature selected using k-means clustering. We automatically detect the starting and ending frame and discriminate the action of table-tennis into two groups of forehand and backhand swing. Each swing is modeled using HMM(Hidden Markov Model) and we used a dataset composed of 200 sequences from two players. We can discriminate two types of table tennis swing in real-time. Also, it can provide analysis according to similarities found in good poses.

액상수은 제어를 위한 다공성 탄소입자 제조에 관한 연구 (Synthesis of Porous Carbon Particles for the Absorption of Mercury)

  • 이정민;강신재;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.305-305
    • /
    • 2009
  • The carbon nano-structured materials could be applied to the fields of advanced fillers, templates, electrode materials, sensor, storage, and absorption materials. The polyacrylonitrile (PAN) based carbon nano-particles provide the remarkable properties of high specific surface area, large pore volume, chemical inertness, and good mechanical stability. In this study, well-defined carbon nano-particles were obtained through pyrolysis of polyacrylonitrile based particles. The precursor nano-particles were prepared by modified aqueous dispersion polymerization using hydrophilic poly(vinyl alcohol) in a water/ N,N-dimethylformamide mixture media. Synthesized precursor nanoparticles have relatively monodisperse particles ranging 80 ~ 250nm. Stable spherical particles are obtained without coagulum or secondary particles in our system. The characteristic of the carbon nanoparticles were investigated in terms of surface area, morphology, and size distribution.

  • PDF

A Circular Bimorph Deformable Mirror for Circular/Annulus/Square Laser Beam Compensation

  • Lee J.H.;Lee Y.C.;Cheon H.J.
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.23-27
    • /
    • 2006
  • We are studying the application of an adaptive optics system to upgrade the beam quality of a laser. The adaptive optics (AO) system consists of a bimorph deformable mirror, a Shack-Hartmann sensor and a control system. In most AO applications, the beam aperture is considered to be circular. However, in some cases such as laser beams from unstable resonators, the beam apertures are annulus or a holed-rectangle. In this paper, we investigate how well a bimorph deformable mirror of ${\Phi}120\;mm$ clear aperture can compensate phase distortions for three different beam configurations; 1) ${\Phi}120\;mm$ circular aperture, 2) ${\Phi}100\;mm$ annulus aperture with a ${\Phi}20\;mm$ hole and 3) $70\;mm{\times}70\;mm$ square aperture with a hole of $30\;mm{\times}30\;mm$. This study concludes that the bimorph mirror, which might be considered as a modal controller, can compensate tilt, defocus, coma and astigmatism, and spherical aberration for all three beams.

병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가 (Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism)

  • 윤정원;류제하
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

마이크로 가공에서 절삭깊이 보정을 위한 AE 센서의 적용 (Application of AE Sensor for Calibration of Depth of Cut in Micro-machining)

  • 강익수;김정석;김전하
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.53-57
    • /
    • 2009
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe. In general, the form accuracy of machined parts is determined by the relative position between workpiece and tool during machining process. To improve machining accuracy the relative position errors should be maintained within the required accuracy. This study deals with the estimation and calibration of depth of cut using the AE signal in micro-machining. Also, this sensing technique can be applied to detect the initial contact between workpiece and tool.

힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발 (Development of a 6-axis Robotic Base Platform with Force/Moment Sensing)

  • 정성훈;김한성
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

치과용 초음파 수술기의 이송속도 및 시편형상이 절삭반력과 표면거칠기에 미치는 영향 (Effect of Feedrate and Specimen Shape on Cutting Force and Surface Roughness of Ultrasonic Dental Surgical Instrument)

  • 김상호;양승한;이중호;최종균
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.109-117
    • /
    • 2023
  • In this study, the effect of the shape of the specimen and the feedrate of the dental ultrasonic surgical instrument on the cutting force and surface roughness of the specimen is analyzed. Experimental specimens were made of SAWBONES artificial bone materials in square and spherical specimens. In addition, the cutting feedrate of the surgical instrument was controlled through the developed moving system. The cutting force generated when cutting the specimen was measured through a force sensor. After the experiment, the cutting surface of the specimen was observed through a three-dimensional optical microscope and the surface roughness was measured. Through one-way ANOVA, the effect of each specimen shape and feed rate on surface roughness was analyzed. As a result of the experiment, the cutting force increased proportionally in the initial feed rate increase stage, but the increase in cutting force decreased as the feed rate continued to increase. Also, the cutting force showed a difference according to the shape of the specimen. The spherical specimen with a relatively small cutting surface area had less cutting force than the square specimen. However, as a result of one-way ANOVA, it was found that the specimen shape and feed rate did not affect the surface roughness. In future studies, it is expected to be used for comparative analysis of ultrasonic surgical instruments and correlation analysis between cutting factors.

3차원 LiDAR 점군 데이터에서의 가상 차량 데이터 생성을 위한 구면 점 추적 기법 (Spherical Point Tracing for Synthetic Vehicle Data Generation with 3D LiDAR Point Cloud Data)

  • 이상준;김학일
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.329-332
    • /
    • 2023
  • 딥러닝 네트워크를 이용한 3차원 객체 인식 기술은 자율주행 기술 개발에 있어 대상 객체의 종류 뿐만 아니라 센서로부터의 거리도 인식할 수 있기 때문에 장애물 탐지를 위해 많이 개발되고 있다. 하지만 3차원 객체 인식 모델의 경우 원거리 객체에 대한 탐지 성능이 근거리 객체에 대한 인식 성능보다 낮아 차량의 안전을 확보하는 데에 치명적인 문제가 발생할 수 있다. 본 논문에서는 가상의 3차원 차량 데이터를 생성해 모델 학습에 사용되는 데이터셋에 추가하여 3차원 객체 인식 모델의 성능, 특히 원거리의 객체에 대한 성능을 향상시키는 기술을 소개한다. 3차원 라이다 센서 데이터의 특성을 활용한 구면 점 추적 기법을 사용하여 실제 차량과 매우 유사한 가상 차량을 생성하였고, 생성한 가상 차량 데이터를 사용하여 원거리뿐만 아니라 모든 거리 영역 범위에서의 객체 인식 성능을 향상시킴으로써 가상 데이터의 학습 유효성을 입증하였다.