• Title/Summary/Keyword: Spherical pressure hull

Search Result 3, Processing Time 0.021 seconds

Structural Analysis for Spherical Pressure Hull of Deep Manned Submersible (심해 유인 잠수정 구형 내압 선체의 구조 해석)

  • Lee, Hanmin;Park, Seong-Whan;Lee, Jai-Kyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.412-419
    • /
    • 2015
  • This paper presents the results of the structural analysis and the optimization of a 6,500 m manned submersible. Nonlinear structural analysis for imperfect spheres with the maximum allowable out-of-roundness(OOR) was performed to calculate the thickness of the pressure hull. Dimensions of viewports were determined according to ASME PVHO standard. The design optimization of the spherical hull with openings was divided into two steps - the optimization of the detailed shape of the viewport reinforcements and the optimization of the viewport location in the spherical pressure hull.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.

Probabilistic ultimate strength analysis of submarine pressure hulls

  • Cerik, Burak Can;Shin, Hyun-Kyoung;Cho, Sang-Rai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.101-115
    • /
    • 2013
  • This paper examines the application of structural reliability analysis to submarine pressure hulls to clarify the merits of probabilistic approach in respect thereof. Ultimate strength prediction methods which take the inelastic behavior of ring-stiffened cylindrical shells and hemi-spherical shells into account are reviewed. The modeling uncertainties in terms of bias and coefficient of variation for failure prediction methods in current design guidelines are defined by evaluating the compiled experimental data. A simple ultimate strength formulation for ring-stiffened cylinders taking into account the interaction between local and global failure modes and an ultimate strength formula for hemispherical shells which have better accuracy and reliability than current design codes are taken as basis for reliability analysis. The effects of randomness of geometrical and material properties on failure are assessed by a prelimnary study on reference models. By evaluation of sensitivity factors important variables are determined and comparesons are made with conclusions of previous reliability studies.