• Title/Summary/Keyword: Spherical powder

Search Result 418, Processing Time 0.022 seconds

Synthesis of TiO2 and BaTiO3 Powders by Ultrasonic Spray Pyrolysis Method (초음파 분무 열분해법에 의한 TiO2 및 BaTiO3 분말의 제조)

  • Kim, D.J.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.691-697
    • /
    • 1989
  • Fine TiO2 and BaTiO3 powders having spherical particles were synthesized by ultrasonic spray pyrolysis of alcoholic solution of metal alkoxide in an electric furnace heated at 400-90$0^{\circ}C$. Microstructure and composition of particles synthesized were observed by TEM and XRD respectively. Spectific surface area of powders synthesized was examined through BET specific surface area measurement. TEM observation revealed that the particle size did not change irrespective of pyrolysis temperature but decreased according to the increase of concentration and spherical particle was consisted of primary particles of about 0.02${\mu}{\textrm}{m}$. As for BaTiO3 powder, the ratio of Ti/Ba was 0.987 by EDX analysis.

  • PDF

Flow Patterns and Critical Circulation Frequency for Mixing in Shaking Vessels with Various Geometry (진동교반조의 기하형상에 따른 유동상태와 혼합한계회전수)

  • Lee, Young-Sei;Kim, Moon-Gab;Kim, Jong-Shik;Ue, Takafumi;Kato, Yoshihito
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.49-56
    • /
    • 2003
  • Based on the flow patterns of cylindrical vessel, the flow patterns of conical vessel, spherical vessel, rectangular vessel and cylindrical vessel with baffles were visualized by a trace method using aluminum powder. In addition, the correlations of the critical circulating frequency for mixing were derived from the experimental results. The conical and spherical vessels which have circular cross sections were same effective as cylindrical vessel for the shake mixing due to developing the rotational flow. Both a rectangular vessel and a cylindrical vessel with baffles should not be adapted for shake mixing because of not developing rotational flows in these type of vessels.

  • PDF

Preparation and Characterization of Europium-doped Gadolinium Oxide Phosphors Using Oxalate Coprecipitation Method

  • Park, In-Yong;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.177-182
    • /
    • 2010
  • To synthesize $Gd_2O_3:Eu^{3+}$ phosphor, gadolinium-europium oxalate precursors were prepared from oxalic acid, NaOH or aqueous ammonia via coprecipitation method. The obtained precursors were heat-treated and then characterized by XRD, SEM and PL. The kinds and amounts of coprecipitant (NaOH or aqueous ammonia) were found to affect the powder morphology and properties of gadolinium-europium oxalate precursors. Two crystalline precursors and one amorphous precursor were synthesized. The nanometer-sized amorphous gadolinium-europium oxalate precursor was first prepared using the oxalate coprecipitation technique. The calcined powders obtained from the amorphous precursor were nearly spherical in shape, and a narrow size distribution was obtained. The NaOH coprecipitant was more effective in the preparation of nanometer-sized spherical powders. A thermal decomposition process was conducted for the three kinds of precursors. The photoluminescence property was also measured as a function of europium content, and concentration quenching occurred for samples with europium concentrations of over 10 mol%.

Nano $MgB_2$ Powder Synthesis by Spray Pyrolysis Method (분무열분해법에 의한 나노 $MgB_2$ 분말 제조 연구)

  • Ko Jae Woong;Yoo Jai Moo;Kim Young Kuk;Chung Kuk Chae;Yoo Sang lm;Han Bong Soo;Kim Young Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2005
  • Nano- sized spherical $MgB_2$ Powders were synthesized by spray Pyrolysis method. The Influence of solution concentration and furnace reaction temperature on morphology and average particle size were investigated. For adequate preparation conditions, it has mostly spherical, solid and narrow particle size distribution. Average particle size$(X_{50})$ distribution was below 100 nm. The critical temperature for the synthesized $MgB_2$ was around 36K.

Preparation of Spherical Monodispersed Y-doped ZrO2 Powders from Metal Alkoxide (금속 알콕사이드로부터 구형의 단분산 Y-doped $ZrO_2$ 미립자 제조)

  • 김병익;이중윤;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • 3 mol% Y2O3-doped ZrO2 powders were prepared by hydrolysis with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mol/ιH2O/ethanol into 0.1 mol/ι zirconium and yttrium alkoside/ethanol. Spherical monodispersed yttria-partially stabilized zirconia particles with an average diameter of about 0.5 ${\mu}{\textrm}{m}$ were prepared by hydrolysis with 0.2 mol/ιH2O/ethanol. The as-prepared powder was amorphous and with heating it transformed into cubic up to 80$0^{\circ}C$ and into tetragonal over 100$0^{\circ}C$. 3 mol% Y2O3-doped ZrO2 powders calcined over and up to 80$0^{\circ}C$ were a mixture of tetragonal and monoclinic and only tetragonal as determined by X-ray diffraction, respectively.

  • PDF

Effect of Dispersant on the Characterization of Cu Powders Prepared with Wet-reduction Process (액상-환원법으로 합성된 Cu 분말의 특성에 미치는 분산제의 영향)

  • Kim, Yong-Yee;Kim, Tea-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • Ultra-fine Copper powder for a conductive paste in electric-electronic field have been synthesized by chemical reduction of aqueous $CuSO_4$ with hydrazine hydrate $(N_2H_4{\cdot}H_2O)$ as a reductor. The effect of reaction conditions such as dispersant and reaction temperature on the particle size and shape for the prepared Cu powders was investigated by means of XRD, SEM, TEM and TGA. Experiments showed that type of dispersant and reaction temperature were affected on the particle size and morphology of the copper powder. When the carboxymethyl cellulose (CMC) was added as a dispersant the relative mono-dispersed and spherical Cu powder was obtained. Cu powders with particle size of approximately 140nm and narrow particle size distribution were obtained from 0.3M $CuSO_4$ with adding of 0.03M CMC and 40ml $N_2H_4{\cdot}H_2O$ at a reaction temperature of $70^{\circ}C$.

Fabrication of Al Flake Powder for Pigment (안료용 알루미늄 플레이크 분말 제조)

  • 홍성현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2003
  • The study for producing the flake powders by milling of aluminum foil and gas atomized powders was carried out. The effects of lifter bars on the ball motions and milling of aluminum foils were also investigated. The aluminum foils were laminated each other, elongated, fragmented into small foils and finally formed into the flake powders during the dry ball-milling. The spherical atomized-powders were milled to coarse flake powders with high aspect ratio and then changed to fine flake powders with lower aspect ratio. Even though long times were required for making flake powders by milling of foils, the water covering areas of them were higher than those of powders milled using gas-atomized powders, suggesting aluminum foils were more plastically deformed by micro-forging. On the other hand, as the number of lifter bars increased, the necessary rotation speeds of milling jar for cascading mode and cataracting mode decreased drastically. It was possible to achieve same quality of milled flake powder by using the lifter bars under the lower milling speeds. The painting test showed that the appearance of painted surface was good and optimum content range of aluminum paste in car paint to maximize the degree of gloss was 3-5%.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Effect of Ball milling Time on Graphite Dispersion and Mechanical Properties in Rapidly Solidified 6061 Al Composite (급속응고 6061Al/Graphite 복합재료의 볼밀링 시간에 따른 흑연 분산거동 및 기계적 특성)

  • Son, Hyeon-Taek;Lee, Jae-Seol;Hong, Soon-Jik;Chun, Byong-Sun
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • A composite of rapidly solidified Al-6061 alloy powder with graphite particle reinforcements was prepared by ball milling and subsequent hot extrusion. The microstructure and mechanical properties of these composites were investigated as a function of milling time. With increasing milling time, the gas atomized initially and spherical powders became elongated with a maximum aspect ratio after milling for 30 h. Then, refinement and spheroidization were achieved by further milling to 70 h with a homogeneous and fine dispersion of graphite particles forming between the matrix alloy layers. The best compression and wear properties were obtained in the powder milled for 70 h, associated with the increased fine and homogeneous distribution of graphite particles in the aluminum alloy matrix.

Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods (수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성)

  • Lee, Ki-Bum;Nam, Chunghee
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.