• Title/Summary/Keyword: Spherical particle formation

Search Result 83, Processing Time 0.024 seconds

Geochemistry and Mineralogical Characteristics of Precipitate formed at Some Mineral Water Springs in Gyeongbuk Province, Korea (경북지역 주요 약수의 지화학과 침전물의 광물학적 특성)

  • Choo, Chang-Oh;Lee, Jin-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2009
  • Mineralogical characteristics of secondary precipitate formed at some mineral water springs in Gyeongbuk Province, Korea were studied in relation to water chemistry. The chemical water types of mineral water springs are mostly classified as $Ca-HCO_3$ type, but $Na(Ca)-HCO_3$ and $Ca-SO_4$ types are also recognized. Ca, Fe, and $HCO_3\;^-$ are the most abundant components in the water. The pH values of most springs lie in 5.76${\sim}$6.81, except Hwangsu spring having pH 2.8. Saturation indices show that all springs are supersaturated with respect to iron minerals and oxyhydroxides such as hematite and goethite. The result of particle size analysis shows that the precipitate is composed of the composite with various sizes, indicating the presence of iron minerals susceptible to a phase transition at varying water chemistry or the mixtures consisting of various mineral species. The particle size of the reddish precipitate is larger than that of the yellow brown precipitate. Based on XRD and SEM analyses, the precipitate is mostly composed of ferrihydrite (two-line type), goethite, schwertmannite, and calcite, with lesser silicates and manganese minerals. The most abundant mineral fanned at springs is ferrihydrite whose crystals are $0.1{\sim}2\;{\mu}m$ with an average of $0.5\;{\mu}m$ in size, characterized by a spherical form. It should be interestingly noted that schwertmannite forms at Hwangsu spring whose pH is very low. At Shinchon spring, Gallionella ferruginea, one of the iron bacteria, is commonly found as an indicator of the important microbial activity ascribed to the formation of iron minerals because very fine iron oxides with a spherical form are closely distributed on surfaces of the bacteria. A genetic relationship between the water chemistry and the formation of the secondary precipitate from mineral water springs was discussed.

Preparation of Charged Composite Particles for Electrophoretic Display (전기영동 디스플레이용 대전 복합입자의 제조)

  • Na, Hae-Jin;Baek, Jeong-Ju;Kim, Ji-Suk;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.347-352
    • /
    • 2009
  • Charged organic-inorganic composite particles were prepared for the application to electrophoretic display technology such as electronic paper. $TiO_2$ and $Co_3O_4$ particles were used for core particles and were coated with poly(methyl methacrylate) by dispersion polymerization. Composite particles were endowed with charge moiety for electrophoresis; positive charge for $TiO_2$ and negative charge for $Co_3O_4$ composite particles. Scanning electron microscopic results revealed that the charged composite particles have spherical shape. Densities of the composite particles were controlled to be that of medium of electrophoresis. Density of $TiO_2$ particle changed from 4.02 to 1.44 g/$cm^3$ after the polymer coating, and that of $Co_3O_4$ particles changed from 6.11 to 1.49 g/$cm^3$. Urea, melamine, and formaldehyde were used as wall materials for capsule, and microcapsule containing black or white particles inside were prepared by in-situ polymerization. Microcapsule showed the inspection by a video microscope demonstrated the formation of uniform transparent capsules.

Preparation of Solid Dispersions of a Poorly Water-soluble Drug Using Supercritical Fluid (초임계 유체를 이용한 난용성 약물의 고체분산체 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Jung, In-Il;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.533-540
    • /
    • 2009
  • In this work, 5'-nitroindirubinoxime (5'-NIO) has been prepared as solid dispersions using a supercritical aerosol solvent extraction system (ASES) process in order to enhance its water solubility and dissolution rate. Solid dispersions of 5'-NIO and poly(vinyl pyrrolidone) (PVP) were prepared in various weight percent ratios. Three-component solid dispersions consisting of 5'-NIO, PVP, and poloxamer 188 (P188) were also prepared to study the influence of P188 level on their morphology, crystallinity, and dissolution behavior. All samples were prepared at $35^{\circ}C$ and 180 bar using supercritical carbon dioxide. The particle morphology and size of the two-component solid dispersions were found to be nearly spherical and much smaller (100-200 nm) compared with the original 5'-NIO. The morphology of three-component solid dispersions became more agglomerated as the level of P188 increased. The crystallinity of the original 5'-NIO was not observed in the solid dispersions prepared by the ASES process. Faster dissolution rates were observed for the three-componet solid dispersions because the arrangement of ethylene oxide and propylene oxide blocks of the poloxamer 188 enabled the formation of micelles in an aqueous phase.