• Title/Summary/Keyword: Spherical carbon

Search Result 162, Processing Time 0.032 seconds

Synthesis and Applications of Spherical Active Carbon Materials (구형 활성탄소의 합성 및 응용)

  • Kim, Hongkyeong
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Spherical active carbon materials have been used for the removal of pollutants in the area of food processing, water treatment, air purification, oral administration. Moreover, they are now expected to make an epoch in the areas of electronics, life science, environmental technology, and so on due to their superior physical properties. Carbon particles should be requested for the edgeless spherical shapes in order to minimize the loss due to the abrasion during the process and/or practical use, but the carbon particles manufactured from petroleum-based pitch do not meet these needs. Nowadays, thus, the spherical active carbon particles carbonized from various spherical polymer beads are studied with thermoplastic and/or thermosetting polymers. In this paper, the synthesis of spherical phenolic beads and furan beads, which are thermosetting polymers, and their carbonization techniques are examined.

  • PDF

Additional Effect of Zeolite Based on Bactericidal Activated Carbon Spheres with Enhanced Adsorption Effect and Higher Ignition Temperature

  • Zhu, Lei;Ye, Shu;Asghar, Ali;Bang, Seong-Ho;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, the fabrication of zeolite combined activated carbon spherical samples was carried out as follows. Briefly, ZSM-5 zeolite and activated carbon were composed as main absorbent materials; by controlling the weight percentage of zeolite and binder materials, a series of spherical samples (AZP 4, 6, 8) were prepared. These spherical samples were characterized by BET, XRD, SEM, EDX, and pressure drop; benzene and iodine adsorption tests, bactericidal effect test, and ignition temperature test were also performed. The adsorption capability was found to depend on the BET surface area; the spherical samples AZP6 with high BET surface area of $1011m^2/g$ not only exhibited excellent removal effects for benzene (24.9%) and iodine (920mg/g) but also a good bactericidal effect. The enhanced ignition temperature may be attributed to the homogeneous dispersion conditions and the proper weight percentage ratio between zeolite and activated carbon.

Application of Suspension-Polymerized Spherical PAN beads as a Precursor of Spherical Activated Carbon (현탁중합으로 합성된 구형 PAN 수지의 구형 활성탄의 전구체로서의 활용)

  • Hyewon, Yeom;Hongkyeong, Kim
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Polyacrylonitrile was synthesized through suspension polymerization and then sieved to obtain spherical beads with a size of 200~510 ㎛. PAN was copolymerized with 2 mol% MMA monomer which is known to promote cyclization and crosslinking of nitrile group. The resonance cyclization reaction of the nitrile group in the synthesized PAN beads was observed near 170℃ with thermal analysis and FT-IR. The reaction conversion of the nitrile group in spherical beads was 23% during heat treatment, which was lower than that of the well-oriented PAN fiber used as a precursor of carbon fiber. This is because the stereo-regularity of molecular chains in the form of a random coil (spherical bead) is much lower than that of PAN fiber. It was confirmed that the compressive strength of the spherical PAN bead was greatly improved through the resonance cyclization and shrinkage according to the heat treatment, and it was also observed that the pores in PAN beads were formed after the heat treatment.

Preparation of Spherical Activated Carbon and Their Physicochemical Properties

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.568-573
    • /
    • 2009
  • In this study, we used coal based activated carbons as starting material and phenolic resin (PR) as a bonding agent to prepare spherical shaped activated carbons. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity and pressure drop. According to the results, the spherical activated carbon prepared with activated carbon and PR at a ratio of 60:40 was found to have the best formation of spherical shape, which was found in sample SAC40. After activation, SAC40 has high BET surface area, iodine adsorption capability and strength value, and lowest pressure drop.

Formation of Isotropic Carbon Matrix in Carbon/Carbon Composites Derived from Pitch

  • Ahn, Chong-Jin;Park, In-Seo;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.304-310
    • /
    • 2010
  • To manufacture a carbon/carbon composite the coal tar pitch was used as the matrix precursor and the PAN (polyacrylonitrile)-based carbon fiber was used as the reinforcing material to weave 3-directional preform. For pressure carbonization HIP equipment was used to produce a maximum temperature of $1000^{\circ}C$ and a maximum pressure of 100 MPa. The carbonization was induced by altering the dwell temperature between $250^{\circ}C$ and $420^{\circ}C$, which is an ideal temperature for the moderate growth of the mesophase nucleus that forms within the molten pitch during the pressure carbonization process. The application of high pressure during the carbonization process inhibits the mesophase growth and leads to the formation of spherical carbon particles that are approximately 30 nm in size. Most particles were spherical, but some particles were irregularly shaped. The spread of the carbon particles was larger on the surface of the carbon fiber than in the interior of the matrix pocket.

TiO2 Combining Spherical Activated Carbon Photocatalysts and Their Physicochemical and Photocatalytic Activity

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Hyuk;Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Choi, Jong-Geun;Meng, Ze-Da
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.535-542
    • /
    • 2010
  • In this study, we used coal-based activated carbons and charcoal as startingmaterials, phenolic resin (PR) as a binder, and TOS as a titanium source to prepare $TiO_2$ combining spherical shaped activated carbon photocatalysts. The textural properties of the activated carbon photocatalysts (SACP) were characterized by specific surface area (BET), energy dispersive X-ray spectroscopy (XRD), scanning electron microscopy (SEM), iodine adsorption, strength intensity, and pressure drop. The photocatalytic activities of the SACPs were characterized by degradation of the organic dyes Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (Rh. B) and a chemical oxygen demand (COD) experiment. The surface properties are shown by SEM. The XRD patterns of the composites showed that the SACP composite contained a typical single, clear anatase phase. The EDX spectro for the elemental indentification showed the presence of C and O with Ti peaks. According to the results, the spherical activated carbon photocatalysts sample of AOP prepared with activated carbon formed the best spherical shape, a high BET surface area, iodine adsorption capability and strength value, and the lowest pressure drop, and the photocatalytic activity was better than samples prepared with charcoal. We compared the degradation effects among three kinds of dyes. MB solution degraded with the SACP is better than any other dye solutions.

NH3 and H2S Removal Characteristics on Spherical Carbons: Synergistic Effect between Activated Carbon and Zeolite Composites

  • Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.726-732
    • /
    • 2016
  • In this study, we used activated carbon(AC) as a carbon source, along with zeolite, to prepare spherical carbons using sucrose, starch and phenolic resin(PR) as binder material. The physicochemical characteristics of the three samples(AZ4P, AZ6P and AZ8P) were examined by BET, XRD, SEM, EDX, $H_2S/NH_3$ gas adsorption, compressive strength and ignition test techniques. Through comparative analysis of the compressive strength and ignition test results the AZ8P sample was found to have the best hardness and the highest temperature resistance capacity. After activation, the AZ8P sample had the best $H_2S$ adsorption capacity, and AZ6P was the most suitable for the adsorption of ammonia.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor (전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조)

  • Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.396-401
    • /
    • 2009
  • A micro-spherical activated carbon with meso-pore structure of 52~64% and particle diameter of $2{\sim}10{\mu}m$ was prepared for the improvement electrochemical performance of activated carbon as electrode material for electric double layer capacitor. Resorcinol-formaldehyde resin was used as a carbon source in this preparation. According to electrochemical analysis of EDLC using this activated a carbon with showing effects to reduce charge transfer resistance and to increase rate capability, it was found out that micro-spherical activated carbon could be a good method as well as a material for enhancing the performance of electric double layer capacitor.

Interfacial shear strength test by a hemi-spherical microbond specimen of carbon fiber and epoxy resin (탄소섬유/에폭시의 반구형 미소접합 시험편에 대한 계면강도 평가)

  • Park, Joo-Eon;Gu, Ja-Uk;Kang, Soo-Keun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.15-21
    • /
    • 2008
  • Interfacial shear strength between epoxy and carbon fiber was analyzed utilizing a hemi-spherical microbond specimens adhered onto single carbon fiber. The hemi-spherical microbond specimen showed high regression coefficient and small standard deviation in the measurement of interfacial strength as compared with a droplet and an inverse hemi-spherical one. This seemed to be caused by the reduced meniscus effects and the reduced stress concentration In the region contacting with a pin-hole loading device. Finite element analysis showed that the stress distributions along the fiber/matrix interface in the hemi-spherical specimen had a stable shear stress distribution along the interface without any stress mode change. The experimental data was also different according to the kinds of loading device such as the microvise-tip and the pin-holed plate.