Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.12.726

NH3 and H2S Removal Characteristics on Spherical Carbons: Synergistic Effect between Activated Carbon and Zeolite Composites  

Ye, Shu (Department of Advanced Materials & Science Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.26, no.12, 2016 , pp. 726-732 More about this Journal
Abstract
In this study, we used activated carbon(AC) as a carbon source, along with zeolite, to prepare spherical carbons using sucrose, starch and phenolic resin(PR) as binder material. The physicochemical characteristics of the three samples(AZ4P, AZ6P and AZ8P) were examined by BET, XRD, SEM, EDX, $H_2S/NH_3$ gas adsorption, compressive strength and ignition test techniques. Through comparative analysis of the compressive strength and ignition test results the AZ8P sample was found to have the best hardness and the highest temperature resistance capacity. After activation, the AZ8P sample had the best $H_2S$ adsorption capacity, and AZ6P was the most suitable for the adsorption of ammonia.
Keywords
spherical carbons; activated carbon; zeolite; adsorption; BET; ignition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhu L and Oh WC, J. Multifunct Mater Photosci 5, 153-170 (2014).
2 Y. Ueno, T. Horiuchi, M. Tomita, O. Niwa, O., H.-S. Zhou, T. Yamada and I. Honma, J. Anal. Chem., 74, 5257 (2002).   DOI
3 J.-H. Yun, K.-Y. Hwang and D.-K. Choi, J. Chem. Eng. Data, 43, 843 (1998).   DOI
4 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 359, 710 (1992).   DOI
5 M. Kruk, M. Jaroniec, C. H. Ko and R. Ryoo, Chem. Mater., 12, 1961 (2000).   DOI
6 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 279, 548 (1998).   DOI
7 W.-C. Oh, J.-G. Kim, H. Kim, M.-L. Chen, K. Zhang, Z.-D. Meng F.-J. Zhang, J. Mater. Res., 19, 569 (2009).
8 A. Sayari, S. Hamoudi and Y. Yang, Chem. Mater., 17, 212 (2005).   DOI
9 E. W. Shin, J. S. Han, M. Jang, S. H. Min, J. K. Park and R. M. Rowell, Environ. Sci. Technol., 34, 912 (2004).
10 W.-C. Oh, J.-G. Kim, H. Kim, F.-J. Zhang, Ming-Liang Chen, Kan Zhang, Ze-Da Meng, J. Korean Ceram. Soc., 46, 6, 568-573 (2009).   DOI
11 H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann, Appl. Catal. B, 39, 75 (2002).   DOI
12 W.-C. Oh, J.-S. Bae and M.-L. Chen, Carbon Science, 7, 259 (2006).
13 W.-C. Oh, C.-S. Park, C.-Y. Park, M.-L. Chen, A.-R. Jung, Proceeding of International Carbon Festival 2006, Nov. 29-Dec.1, 2006, Jeollabukdo.
14 W. Lu, D. D. L. Chung, Carbon, 35, 427 (1997).   DOI
15 J. W. Kim, M. H. Sohn, D. S. Kim, S. M. Sohn and Y. S. Kwon, J. Hazard. Mater., 85, 301 (2001).   DOI
16 S. C. Kim, I. K. Hong and K. A. Park, J. Ind. Eng. Chem., 3, 218 (1997).
17 W. C. Oh, M. L. Chen and C. S. Lim, J. Ceram. Process. Res., 8, 119 (2007).
18 T. Morimoto, S. Wu, M. A. Uddin and E. Sasaoka, Fuel, 84, 1968 (2005).   DOI
19 G. Q. Lu and D. D. Lau, Gas Sep. Purif., 10, 103 (1996).   DOI
20 A. Cameron and J. D. Macdowall, J. Appl. Chem. Biotechnol., 22, 1007 (1972).
21 Guoxing Niu, Yao Huang, Xiaoyin Chen, Jianming He, Yong Liu and Adi He, Appl. Catal. B, 21, 63 (1999).   DOI
22 J. Weitkamp, Solid State Ion., 131, 175 (2000).   DOI
23 H. Yoneyama and T. Torimoto, Catal. Today, 58, 133 (2000).   DOI
24 T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama, Environ. Sci. Technol., 30, 1275 (1996).   DOI
25 M. Matsuoka, E. Matsuda, K. Tsuji, H. Yamashita and M. Anpo, J. Mol. Catal. A 107, 399 (1996).   DOI
26 M. Matsuoka, W.S. Ju, H. Yamashita and M. Anpo, J. Photochem. Photobiol. A, 160, 43 (2003).   DOI
27 G. Cik, S. Priesolova, H. Bujdakova, F. er en, T. Potheoova, J. Kri tin, Chemosphere, 63, 1419 (2006).   DOI
28 K. D. Dubois, A. Petushkov, E. Garcia Cardona, S. C. Larsen and G. Li, J. Phys. Chem. Lett., 3, 486 (2011).
29 K. Zhang and W. C. Oh, Korean J. Mater. Res., 19, 481 (2009).   DOI
30 F. Haque, E. Vaisman, C. H. Langford and A. Kantzas, J. Photochem. Photobiol. A, 169, 21 (2005).   DOI
31 Y. Kuwahara and H. Yamashita. J. Mater. Chem., 21, 2389 (2011).   DOI
32 T. Kuzniatsova, Y. Kim, K. Shqau, P. K. Dutta and H. Verweij, Microporous Mesoporous Mater., 103, 102 (2007).   DOI
33 M. D. Driessen, A. L. Goodman, T. M. Miller, G. A. Zaharias and V. H. Grassian, J. Phys. Chem. B, 102, 549 (1998).   DOI
34 A. Dimirkou, M. K. Doula, Desalination, 224, 280 (2008).   DOI
35 H. Haick and Y. Paz. J. Phys. Chem. B, 107, 2319 (2003).   DOI
36 R. Sitthikhankaew, D. Chadwick, S. Assabumrungrat and N. Laosiripojana, Fuel Process. Technol., 124, 24 (2014).
37 Y. Xiao, S. Wang, D. Wu and Q. Yuan, Sep. Purif. Technol., 59, 326 (2008).   DOI
38 M. Sarioglu, Sep. Purif. Technol., 41, 1 (2005).   DOI
39 F. J. Barry, Mich. L. Rev, 68, 1103 (1970).   DOI
40 M. L. Nguyen, C. C, New Zeal. J. Agric. Res., 41, 427 (1998).   DOI
41 V. K. Gupta, A. Rastogi and A. Nayak, J. Colloid Interface Sci., 342, 533 (2010).   DOI