• Title/Summary/Keyword: Spherical alumina

Search Result 44, Processing Time 0.027 seconds

Electrical Insulation Breakdown Strength in Epoxy/Spherical Alumina Composites for HV Insulation

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • In order to develop high voltage (HV) insulation materials, epoxy/spherical alumina composites with two different particle sizes (in ${\mu}m$) were prepared and a dynamic mechanical analysis (DMA) and electrical insulation breakdown strength test were carried out in sphere-sphere electrodes and the data were estimated using Weibull statistical analysis. Alumina content varied from 50 to 70 wt%. The electrical insulation breakdown strength for epoxy/alumina (50 wt%) was 44.0 kV/1 mm and this value decreased with increasing alumina content. The effects of insulation thickness and alumina particle size on the insulation breakdown strength were also studied. The insulation thickness varied from 1 mm to 3 mm, and the particle sizes were 7.3 or $40.3{\mu}m$.

Preparation of Spherical Alumina Particle from Aluminum Iso-Propoxide (Aluminum Iso-Propoxide에 의한 구형 알루미나 분체의 제조)

  • Lee, Jin-Hwa;Nam, Ki-Dae;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.163-170
    • /
    • 1999
  • Spherical alumina powders were prepared by the controlled hydrolysis of aluminum iso-propoxide in a solution consisting of n-octyl alcohol and acetonitrile. As aluminum alkoxide's concentration increased, the particle size was increased and size distribution was more broad. As-prepared particle morphology was not spherical when acetonitrile volume fraction was increased over than 60%. As-prepared amorphous powders crystallized to ${\gamma}$-alumina at $1000^{\circ}C$ and converted to ${\alpha}$-alumina at $1150^{\circ}C$. The particle morphology was retain after crystallization ${\alpha}$-alumina. When aluminum iso-propoxide was used as aluminum source, the optimum preparation condition of spherical alumina was 0.1M AIP, 0.2M H2O, $0.1g/{\ell}$ HPC with a volume fraction (1/1) of the n-octyl alcohol/acetonitrile, 10min of reaction time and 30min of aging time.

Dielectric Properties of Epoxy-Nano Composites for Surface Modified Nano Alumina (표면개질된 나노 알루미나의 에폭시-나노 콤포지트 유전 특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.613-619
    • /
    • 2016
  • The aim of this study is to improve of dielectric properties using epoxy/nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2 g). This paper deals with the effects of dielectric properties(${\epsilon}^{\prime}_r$ and $tan{\delta}$) for epoxy/nano alumina contents (1,3 phr) and GDE addition (1,2 g)composites. 5 kinds specimen were prepared with containing epoxy resins, epoxy nano alumina composites. Average particle size of nano used were 30 nm. The nano alumina used were gamma phase particles of spherical shape. The suppression of epoxy chain motion by addition of nano alumina+GDE decreased dielectric loss and relative permittivity magnitude.

A Study on the Thermal Properties of Epoxy/Micro-Nano Alumina Composites, as Mixture of Surface Modified Nano Alumina (표면개질된 나노알루미나를 혼합한, 에폭시/마이크로-나노알루미나 콤포지트의 열적특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1504-1510
    • /
    • 2016
  • The aim of this study is to improve properties both glass transition temperature($T_g$) and coefficient of thermal expansion(CTE) using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,2,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40, 50, 60wt%)+surface modified nano alumina(1_phr) composites. 20 kinds specimen were prepared with containing micro, nano alumina and GDE as a micro composites(10, 20, 30, 40, 50, 60, 70wt%) or a nano/micro alumina composites(1phr/40, 50, 60wt%). Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The glass transition temperature and coefficients of thermal expansion was evaluated by DSC and TMA. The glass transition temperature decreased and coefficients of thermal expansion become smaller with filled contents of epoxy/micro alumina composites. On the other hand, $T_g$ and CTE as GDE addition variation(1,2,3,5g) of epoxy/micro-nano alumina composites decreased and increased respectively.

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

Change of Particle Size of Spherical Alumina Powders Prepared by Emulsion Method in the Region of Low Hydroxypropylcellulose Concentration (저농도의 HPC 영역에서 에멀젼법에 의해 제조된 구형 알루미나 분말의 입자 크기 변화)

  • Ahn, C.W.;Park, K.S.;Yoo, H.S.;Cho, K.;Lee, Y.W.;Yang, M.S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Spherical alumina gel powders were produced by hydrolysis of aluminum sec-butoxide (Al(sec-OC4H9)3) in a n-octanol/acetonitrile mixed solvent. The enlargement of particle size was induced by increasing HPC (hydroypropylcellulose) concentration (0.005, 0.1, and 0.05 g/ι) and emulsion-state aging time (10 min and 360 min). Mean particle sizes of dried alumina gel powders increased from 1.4 ${\mu}{\textrm}{m}$ to 3.5${\mu}{\textrm}{m}$ at 10-min emulsion-state aging time and from 1.9${\mu}{\textrm}{m}$ to 4.1${\mu}{\textrm}{m}$ at 360-min emulsion-state aging time as HPC concentration increased from 0.005 g/ι to 0.05 g/ι. At the same HPC concentration, particle size of dried alumina gel powder increased with increasing of emulsion-state aging time from 10 min to 360 min. The increase in the average particle size of dried alumina gel powder with increase in HPC concentration was interpreted as the enlargement of particles from alkoxide emulsions unprotected by HPC. The produced dried gel powder calcined at 115$0^{\circ}C$ for one hour transformed to $\alpha$-alumina.

  • PDF

Effect of $\alpha-Al_2O_3$ Seeds and Alumina Sol on $\alpha$-Alumina Powder Derived from $\gamma-Al_2O_3$ ($\gamma$-알루미나부터 $\alpha$-알루미나 분말 제조에 있어 Seeding과 알루미나 졸이 미치는 영향)

  • 임경란;장진욱;임창섭;홍국선
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.482-488
    • /
    • 1995
  • The phase transformation temperature from $\theta$- to $\alpha$-alumina was lowered from 1214$^{\circ}C$ to 114$0^{\circ}C$ in DSC by treating ${\gamma}$-alumina obtained by calcination of boehmite at $700^{\circ}C$ for 2hrswith $\alpha$-Al2O3 seeds (d50=0.36${\mu}{\textrm}{m}$) and 3wt% of the alumina sol. $\alpha$-Al2O3 seeds seemed to lower to the transformation temperature and the alumina sol suppressed the high temperature agglormeration. The effect was increased as the amount of the sol was increased, which was supported by TEM and particle size distribution. For an example, spherical ${\gamma}$-alumina powder with d50=0.54${\mu}{\textrm}{m}$ was prepared by treating the ${\gamma}$-alumina with 9 wt% of the alumina sol and 3wt% of the $\alpha$-Al2O3. It sintered to 99% of the theoretical density at 150$0^{\circ}C$ for 2hrs. and it had relatively homogeneous microstructure with 2~3${\mu}{\textrm}{m}$ sized grains.

  • PDF

Influence of Anions on Physical Properties of $\alpha$-Alumina Powder Derived from Boehmite (보헤마이트로부터 $\alpha$-알루미나 분말 제조시 분말 물성에 미치는 음이온의 영향)

  • 임경란;임창섭;장진욱
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.849-854
    • /
    • 1996
  • boehmite which is the by-product in alcohol process contains anions such as $Cl^-,{NO_3}^-.or\; CH_3COO^-$ Influe-nce of these anions was studied on properties of $\alpha$-alumina powders prepared by treating the transformed ${\gamma}$-alumina with the alumina sol and $\alpha$-alumina seeds (d_{50}=0.36\mu\textrm{m}$) Disperal 20/1 and 10/1 containing $Cl^-$ produced spherical powder Disperal 20/2 with ${NO_3}^-$ produced equiaxed powder and Disperal 10/3 with $CH_3$ $COO^-$ irregular shaped and sized powder. All of these $\alpha$-alumina powders were submicron. Although the green density of the alumina powder derived from Disperal 10/1 by calcination at $1200^{\circ}C$/1h. was 53% it did not sinter even at $1550^{\circ}C$ for 2h. which implies that its d50 is greater than $3\mu\textrm{m}$. The others gave green densities in the range of 44~47% but they sintered as well as the AKP-30 at $1500^{\circ}C$/2 h or $1550^{\circ}C$/2 h.

  • PDF

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process (화염용융법에 의한 구상 알루미나 제조에 미치는 초기 알루미나 원료의 화학조성과 입도의 영향)

  • Eom, Sun-Hui;Pee, Jae-Hwan;Lee, Jong-Keun;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2009
  • Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.

Effect of Marangoni flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent Composition

  • Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Hwang, Hae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.99-99
    • /
    • 2009
  • Two different micro-flows during the evaporation of ink droplets were achieved by engineering both surface tension gradient and compositional gradient across the ink droplet: (1) Coffee-ring generating flow resulting from the outward flow inside the ink droplet & (2) Marangoni flow leading to the circulation flow inside the ink droplet. The surface tension gradient and the compositional gradient in the ink droplets were tailored by mixing two different solvents with difference surface tension and boiling point. In order to create the coffee-ring generating flow (outward flow), a single-solvent system using N,N-dimethylformamide with nano-sized spherical alumina particles was formulated, Marangoni flow (circulation flow) was created in the ink droplets by combining N,N-dimethylformamide and fotmamide with the spherical alumina powders as a co-solvent ink system. We have investigated the effect of these two different flows on the formation of ceramic films by inkjet printing method, The packing density of the ceramic films printed with two different ink systems (single- and co-solvent systems) and their surface roughness were characterized. The dielectric properties of these inkjet-printed ceramic films such as dielectric constant and dissipation factor were also studied in order to evaluate the feasibility of their application to the electronic ceramic package substrate.

  • PDF