• Title/Summary/Keyword: Spherical Form Accuracy

Search Result 27, Processing Time 0.029 seconds

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens

  • Lee, Joo-Sang;Masaru Saeki;Tsunemoto Kuriyagawa;Katsuo Syoji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.48-54
    • /
    • 2003
  • This paper deals with mirror grinding of a small-sized aspherical lens by a resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machining technology. Also, to realize compactness, efforts are being made to produce a micro aspherical lens, fur which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing a micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-shaped truer and tool path was calculated by the radius of curvature of the wheel after truing and dressing. Then in the aspherical grinding experiment, WC material which is used as a melding die for the small-sized aspherical lens was ground. The results showed that a form accuracy of 0.1918 $\mu\textrm{m}$ P-V and a surface roughness of 0.064 $\mu\textrm{m}$ Rmax could be achieved.

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens (소형 비구면 렌즈 금형의 경면 연삭 가공에 관한 연구)

  • Lee, Joo-Sang;Saeki, Masaru;Kuriyagawa, Tsunemoto;Syoji, Katsuo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.82-87
    • /
    • 2001
  • This paper deals with mirror grinding of a small-sized aspherical lens by the resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, the aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machinery technology. Also, to realize compactability, efforts are being made to produce a micro aspherical lens, for which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing an micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-type truer and tool path was calculated by the radius of curvature of wheel after truing and dressing. And then in the aspherical grinding experiment, WC material which is used as a molding die for the small-sized aspherical lens was ground. It results was that a form accuracy of 0.1918${\mu}m$ P-V and a surface roughness of 0.064${\mu}m$ Rmax.

  • PDF

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

Deep Learning Based Object Recognition in Spherical Panoramic Image (구면 파노라마 영상에서의 딥러닝 기반 객체 인식)

  • Jung, Minsuk;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.5-14
    • /
    • 2018
  • A lot of research has been done on image recognition technique for planar images and the performance has also been improved. However, it is difficult to recognize objects in spherical panoramic images or images in special form which are given in various environments because of the spherical distortion given in different form from the planar case. In this paper, we show that the neural network recognition approach can be used for object recognition in spherical image and suggest a method of using cubemap transform in order to increase recognition accuracy in spherical image.

Develvopment of Infeed Grinding Machine and Its Effects on Spherical Surface Grinding (구면 전용 Infeed 연삭기의 개발과 성능평가)

  • 이상직;정해도;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1028-1032
    • /
    • 1995
  • This paper describes the manufacture of spherical and aspherical surface on glass, superalloy and ceramic components. The rotationally symmetricallenses, and the ceramic or superalloy molds with spherical shapes are mainly generated by cutting processes on CNC lathe machine or 4,5 axis CNC machining centers. Recently, spherical shape parts require more precise and efficent machining technologies for wide material range such as optical lens of the lithography device in semiconductor manufacturing processes or the high precision mold machining of anti-chemical, anti-wear materials. In this paper, we introduce a newly developed infeed grinding machine with metal with metal bonded cup type wheel and its effects on spherical surface grinding.

  • PDF

Practicability Assessment of Spherical Mechanical Check Device(SMCD) (Mechanical Check용 Spherical device의 제작 및 특성 평가)

  • Lee, Byung-Koo;Yang, Dae-Sik;Kweon, Young-Ho;Ko, Shin-Gwan;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Digital medical image commenced with an introduction of PACS has become more popular today in the radiation diagnosis and radiation treatment and made great progress, in particular, for medical testing field, whereas it has made slow progress for radiation treatment field. In order to accommodate the current trend of digital from analog, a spherical mechanical check device(SMCD) that is the form of spherical differing from the existing form of flat or cube has been designed and tested its practicability to replace the part in mechanical check with digital image from QA operation. If the distance maintains constance between source(target) and image detector with constant distance to the center of spherical mechanical check device(SMCD), the size will be shown as a constant image at all times regardless of its direction exposed. For the test, two accurate hemispheres are made and put together which results in a sphere of the equilateral circle. It enables a variety of implementation of the existing mechanical check using digital image as follows: congruity level of radiation field and light field, size accuracy of radiation field and collimation field, gantry rotation isocenter check, collimation rotation isocenter check, room laser accuracy check, collimation rotation angle check, couch rotation angle check, and more. In addition, it has proved its practicability in checking isocenter congruity level as real time at the time of simultaneous rotation between gantry and couch that is applied to the non-coplanar field, which had been hard to apply as a device formed of existing flat or cube.

  • PDF