• 제목/요약/키워드: Sphere encoder

검색결과 4건 처리시간 0.019초

Fixed-Complexity Sphere Encoder for Multi-User MIMO Systems

  • Mohaisen, Manar;Chang, Kyung-Hi
    • Journal of Communications and Networks
    • /
    • 제13권1호
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, we propose a fixed-complexity sphere encoder (FSE) for multi-user multi-input multi-output (MU-MIMO) systems. The proposed FSE accomplishes a scalable tradeoff between performance and complexity. Also, because it has a parallel tree-search structure, the proposed encoder can be easily pipelined, leading to a tremendous reduction in the precoding latency. The complexity of the proposed encoder is also analyzed, and we propose two techniques that reduce it. Simulation and analytical results demonstrate that in a $4{\times}4$ MU-MIMO system, the proposed FSE requires only 11.5% of the computational complexity needed by the conventional QR decomposition with M-algorithm encoder (QRDM-E). Also, the encoding throughput of the proposed encoder is 7.5 times that of the QRDM-E with tolerable degradation in the BER performance, while achieving the optimum diversity order.

다중 사용자 MIMO 시스템을 위한 고정 복잡도를 갖는 스피어 인코더 (Fixed-complexity Sphere Encoder for Multi-user MIMO Systems)

  • 마나르 모하이센;한동걸;장경희
    • 한국통신학회논문지
    • /
    • 제35권7A호
    • /
    • pp.632-638
    • /
    • 2010
  • 본 논문에서는 다중 사용자 MIMO 시스템을 위한 고정 복잡도를 갖는 스피어 인코더 (FSE)를 제안하고, FSE의 복잡도를 감소시키는 2가지 방법을 제시한다. FSE는 성능과 복잡도 간의 트레이드오프 관계를 적응적으로 조절할 수 있고, 병렬의 트리 탐색구조를 적용함으로써 프리코딩 지연을 상당히 감소시킬 수 있다. $4\times4$ 다중 사용자 MIMO 시스템에서 시뮬레이션을 수행한 결과, 제안한 FSE는 QRDM 인코더 (QRDM-E)에 비하여 작은 BER 성능 감소를 가져오지만 최적의 다이버시티 오더를 달성함과 더불어 일반적인 QRDM-E 복잡도의 16%정도만을 갖고, 인코딩 처리량(throughput)이 7.5배 향상됨을 확인하였다.

주파수 재 사용 기술을 이용한 M-ary 직교 16-State 및 32-State 다차원 PSK 트렐리스코딩 (16-state and 320state multidimensional PSK trellis coding scheme using M-ary orthogonal modulation with a frequency-recuse technique)

  • 김해근;김진태
    • 한국통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.2003-2012
    • /
    • 1996
  • The 16- and 32-state Trellis-coded M-ary 4-dimensional (4-D) orthogonal modulation scheme with a frequency-reuse technique have been investigated. Here, 5 coded bits form a rate 4/5 convolutional encoder provide 32 possible symbols. Then the signals are mapped by a M-ary 4-D orthogonal modulator, where each signal has equal energy and is PSK modulated. In the M-ary 4-D modulator, we have employed the vectors which is derived by the optimization technique of signal waveforms in a 4-D sphere. This technique is usedin maximizing the minimum Euclidean distance between a set of signal poits on a multidimensional sphere. By combinig trellis coding with M-ary 4-D modulation and proper set-partitioning, we have obtained a considerable impeovement in the free minimum distance of the system over an AWGN channel. The 16-state scheme obtains coding gains up to 5.5 dB over the uncoded two-independent QPSK scheme and 2.5 dB over the two-independent 2-D TCM scheme. And, the 32-state scheme obtains coding gains up to 6.4 dB over the uncoded two-independent QPSK schemeand 3.4 dB over the two-independent 2-D TCM scheme.

  • PDF

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.