• Title/Summary/Keyword: Sph2

Search Result 107, Processing Time 0.021 seconds

Hydrodynamic simulations in the Galactic Center : Tilted HI disk

  • Lee, Joowon;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.3-41
    • /
    • 2016
  • Previous HI survey data have shown that the central HI gas in the Milky Way that resides within ~1.5 kpc of the Galactic Centre (GC) is tilted by ${\sim}15^{\circ}$ with respect to the Galactic plane. Although several models, such as a tilted disk model, have been suggested to interpret the observed morphology of the HI layer, it is still unknown what causes and how it preserves its tilted structure. We study the behavior of a gas disk near the GC using an N-body / SPH code. Our galaxy model includes four components; nuclear bulge, bulge, disk and halo. We construct a HI model whose radius is 1.3 kpc, scale height is 100 pc and mass is $3.6{\times}10^6M_{\odot}$. We also assume that the gas disk is initially tilted $30^{\circ}$ with respect to the Galactic plane. Here we report our simulation results and discuss the evolution of the tilted gas disk.

  • PDF

The evolution of a late-type galaxy in a Coma-like cluster

  • Hwang, Jeong-Sun;Park, Changbom;Banerjee, Arunima
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.64.1-64.1
    • /
    • 2016
  • We study the evolution of a late-type galaxy (LTG) in a rich cluster environment by using N-body/SPH simulations. To do that we perform a set of simulations of a LTG falling in a Coma-like cluster and also the LTG colliding with early-type galaxies (ETGs) multiple times in the cluster environment. We use a catalog of the Coma cluster in order to estimate the typical number of collisions and the closest approach distances that a LTG would experience in the cluster. We investigate the cold gas depletion and star formation quenching of our LTG model influenced by the hot cluster gas as well as the hot halo gas of the colliding ETGs.

  • PDF

Hydrodynamics Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.60.3-61
    • /
    • 2018
  • Abell 115 is a renowned cluster merger at z=0.197. It exhibits an asymmetric X-ray distribution with cometary tails and a megaparsec-sized radio relic stretching in the northeastern direction from the core of the northern cluster. Many observations have concluded that this cluster merger has a large impact parameter, but there has been no numerical analysis on the structure of Abell 115. In this study, we simulate Abell 115 with Gadget2 N-body/SPH code to reproduce the X-ray and weak lensing features of Abell 115. We find a new plausible merger scenario of Abell 115, wherein the northern cluster is currently in an outgoing phase. The predicted X-ray emission has a similar morphology to the observed tail of the northern cluster. However, in order to reproduce the observed line-of-sight velocity and projected distance while maintaining the two systems gravitationally bound, the system should possess a large projection angle, which makes the shock look considerably more diffused than the observed radio relic.

  • PDF

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

A Study of K-9 engine Proper Depot maintenance Cycle (K-9 자주포 엔진 적정 창정비주기 연구)

  • Seo, Seong-Cheol;Kim, Tae-Gyun;Song, Bang-Won
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.75-85
    • /
    • 2005
  • Even though K-series combat equipment's engine depot maintenance cycle of ROK army is 10years In average, that of the K-9 Self Propelled(SP) howitzer which has been fielded since 99 $3{\sim}4$years causing limitations to effective equipment operations and combat-readiness. Therefore, the current K-9 self-propelled howitzer engine operation period of 1,500 hours, which is greatly shorter than other equipments, had to be verified. In order to find the optimum depot maintenance cycle, related field operation conditions were verified and opinions were collected, and also the background on current depot maintenance cycle setting was studied.

WIMS-AECL/MULTICELL Calculations with SPH for Wolsong-1 Reactivity Devices

  • Min, B.J.;Kim, B.G.;S.D.Suk;J.V.Donnelly
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.163-168
    • /
    • 1996
  • Simulations of Wolsong-1 Phase-B commissioning measurements have been performed, as part of the program to validate WIMS-AECL lattice cell calculations for application to CANDU reactor simulations in RFSP. A required component of these simulations is the calculation of incremental cross sections representing reactivity control devices in the reactor. The incremental cross section properties of the Wolsong-1 adjusters, Mechanical Control Absorbers (MCA) and liquid Zone Control Units (ZCU) are based on the WIMS-AECL/MULTICELL modelling methods and the results are compared with those of WIMS-AECL/DRAGON-2 modelling methods.

  • PDF

Numerical study on the evolution of the spin of spiral galaxies

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2019
  • We investigate the evolution of the galactic spin of spiral galaxies in various dynamical situations using the N-body/SPH simulations. To do this we first construct a Milky Way-like galaxy model. Then we perform both prograde and retrograde encounters between the spiral galaxy pair. We also conduct a simulation with our galaxy model in isolation for comparison. We find that the circular motion of the disk stars in the inner region of the galaxy decrease clearly when the galaxy experiences strong prograde interactions. Such decrease has not found when the galaxy experiences weak or no interactions. We compare our simulation results with recent observational studies on the galactic spins.

  • PDF

Crystallization and Electrical properties of $CuO-P_2O_5-V_2O_5$ Glass for solid state Electrolyte (고체 전해질용 $CuO-P_2O_5-V_2O_5$ 유리의 결정화와 전기 전도도)

  • Son, Myung-Mo;Lee, Heon-Soo;Chun, Yon-Soo;Gu, Hal-Bon;Lee, Sang-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.934-937
    • /
    • 2003
  • Glasses in the system $CuO-P_2O_5-V_2O_5$ were prepared by a press-quenching method on the copper plate. The glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from $10^{-6}s.Cm^{-1}$ at room temperature, but the conductivities of the glass-ceramics were $10^{-3}s.Cm^{-1}$ increased by $10^3$ order. The crystalline product in the glass-ceramics was $CuV_2O_6$. Heat-treatment conditions influenced the crystal growth of $CuV_2O_6$ and conductivity. The linear relationship between in (${\sigma}T$) and $T^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Solution of OECD/NEA PWR MOX/UO2 benchmark with a high-performance pin-by-pin core calculation code

  • Hyunsik Hong;Jooil Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3654-3667
    • /
    • 2024
  • Expanding upon the framework of the steady-state pin-by-pin 2D/1D decoupling method, a novel and highperformance pin-by-pin transient calculation method has been introduced. This transient method, consistent to the steady-state formulation, is designed for time-dependent calculations utilizing a 3D diffusion-based finite difference method (FDM). The inherent complexity of the large 3D problem is effectively managed by decoupling it into a series of planar (2D) and axial (1D) problems. In addition, tens of thousands of pin-cells are grouped into hundreds of boxes to reduce the computing burden for the 1D calculations without essential loss of the accuracy. Two-level coarse mesh finite difference (CMFD) formulation comprising multigroup nodewise CMFD and twogroup assemblywise CMFD is employed as well to accelerate the convergence. Errors originating from the pinlevel homogenization, energy group condensation, and the use of lower order calculation methods are simultaneously corrected by the pinwise super homogenization (SPH) equivalence factor. The transient method is evaluated with OECD/NEA PWR MOX/UO2 benchmark. Code-to-code comparison with the nTRACER direct whole core calculation code yielded highly satisfactory results for the transient scenario as well as the steady-state problems. Furthermore, comparative analyses with conventional nodal calculations show superiority of the pin-by-pin calculation.

Hypervelocity Impact Simulations Considering Space Objects With Various Shapes and Impact Angles (다양한 형상의 우주 물체와 충돌 각도를 고려한 우주 구조물의 초고속 충돌 시뮬레이션 연구)

  • Shin, Hyun-Cheol;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.829-838
    • /
    • 2022
  • This study conducts Hypervelocity Impact(HVI) simulations considering space objects with various shapes and different impact angles. A commercial nonlinear structural dynamics analysis code, LS-DYNA, is used for the present simulation study. The Smoothed Particle Hydrodynamic(SPH) method is applied to represent the impact phenomena with hypervelocity. Mie-Grüneisen Equation of State and Johnson-Cook material model are used to consider nonlinear structural behaviors of metallic materials. The space objects with various shapes are modeled as a sphere, cube, cylinder, and cone, respectively. The space structure is modeled as a thin plate(200 mm×200 mm×2 mm). HVI simulations are conducted when space objects with various shapes with 4.119 km/s collide with the space structures, and the impact phenomena such as a debris cloud are analyzed considering the space objects with various shapes having the same mass at the different impact angles of 0°, 30° and 45° between the space object and space structure. Although space objects have the same kinetic energy, different debris clouds are generated due to different shapes. In addition, it is investigated that the size of the debris cloud is decreased by impact angles.