• Title/Summary/Keyword: Spermatogenic stage

Search Result 25, Processing Time 0.028 seconds

Sexual Maturation, Sex Ratio and Hermaphroditism of the Pacific Oyster, Crassostrea gigas, on the West Coast of Korea

  • Chung Ee-Yung;Seo Young-Ho;Park Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.82-93
    • /
    • 1998
  • Monthly changes of the gonad follicle index (GFI), reproductive cycle, egg-diameter composition, first sexual maturity of the Pacific oyster, Crassostrea gigas, were studied based on the samples which have been collected from the intertidal zone of Poryong west coast of Korea, from January to December, 1996. C. gigas, is dioecious, while a few individuals are alternatively hermaphroditic. Monthly variation of gonad follicle index (GFI) used for determination of spawning period, coincided with the reproductive cycle. GFI increased from April when seawater temperatures gradually increased and reached the maximum in May. And then, GFI sharply decreased from June to September due to spawning. Reproductive cycle of this species can be divided into five successive stages: in females, early active stage (March to April), late active stage (April to May), ripe stage (May to August), partially spawned stage (June to September) and spent/inactive stage (September to February); in males, early active stage (February to March), late active stage (April to May), ripe stage (May to September), partially spawned stage (June to September) and spent/ inactive stage (September to February). The diameter of fully mature eggs are approximately 50um. Spawning occurred from June to September, and two spawning peaks were observed in June and August when the seawater temperature was above $20^{\circ}C$. Percentages of the first sexual maturity of males of 20.1-25.0 mm in shell height were over $50\%$, while those of females of 25.1-30.0 mm in shell height were over $50\%$. All the males of > 30.1 mm and all the females of ^gt; 35.1 mm completed their first sexual maturity. The results suggest that C. gigas has a protandry phenomenon. Sex ratios of 919 oysters observed were 453 females $(49.29\%)$, 429 males $(46.68\%)$, 16 hermaphrodites $(1.74\%)$, and 21 indeterminate individuals $(2.29\%)$. In age class I, sex ratio of males were $64.00\%$, thus, a higher percentage than that of females. It was noted that $64.00\%$ of the young males (age class I) were more functional than females in age class I, but 2-3 year-old oysters showed higher percentage of females. Percentages of hemaphrodites in 2-3 year classes were relatively higher than those in other year classes. Histological pattern of hermaphrodites can be divided into two types: Type I (hermaphrodite having a number of newly formed developing oocytes on the oogenic tissues within a degenerating spermatogenic follicle after discharge of numerous spermatozoa) and Type II (hermaphrodite having two separate follicles in the same gonad).

  • PDF

Evaluation of the testicular toxicity caused by 2-bromopropane in rats (랫드에 있어서 2-bromopropane에 의해 유발된 정소독성의 평가)

  • Kim, Jong-choon;Lee, Hyun-sook;Yun, Hyo-in;Chung, Moon-koo
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.361-371
    • /
    • 2000
  • It has been recently reported that 2-bromopropane (2-BP) induces male reproductive toxicity in both human and experimental animals. However, delayed effects of 2-BP on male reproductive system have not been investigated in detail. The present study was conducted to investigate the testicular toxicity of 2-BP and to determine the recovery of normal spermatogenesis in Sprague-Dawley rats. Male rats aged 5 weeks were administered 1,000mg/kg 2-BP by gavage daily for 4 weeks and sacrificed sequentially at 1, 2, 3, 4 and 12 weeks after initiation of 2-BP treatment. Testicular toxicity was evaluated qualitatively by histopathological examinations and quantitatively by reproductive organ weights, spermatid head count, and repopulation index. In the 2-BP treated rats, the body weights was significantly suppressed and the weights of testes and epididymides were also decreased in a time-dependent manner. On histopathological examination, spermatogonia in stages I-VI and preleptotene and leptotene spermatocytes in stages VII-IX were strongly depleted at 1 week of dosing. Spermatogonia were depleted extensively in all spermatogenic stages at 2 weeks. Continuing with the evolution of spermatogenic cycle, zygotene spermatocytes, pachytene spermatocytes, and round spermatids were sequentially depleted at 2, 3, and 4 weeks of dosing due to the depletion of their precursor cells. Vacuolization of Sertoli cells and spermatid retention were also observed at all time points, suggesting that 2-BP induced Sertoli cell dysfunction. At 12 weeks, after 8 weeks recovery, most of the tubules appeared severely atrophic and were lined by Sertoli cells only. Leydig cell hyperplasia in the interstitial tissue was also found. In addition, dramatic reductions in the number of spermatid heads and repopulation index were observed, indicating that 2-BP-induced testicular injury is irreversible. These results indicate that 4 weeks repeated-dose of 1,000mg/kg 2-BP results in a progressive germ cell loss due to the depletion of spermatogonia followed by long-term testicular atrophy in SD rats.

  • PDF

Spermatogenesis of the Spiny Top Shell, Batillus cornutus (Lightfoot, 1786) (Gastropoda: Turbinidae) (소라, Batillus cornutus의 정자형성과정)

  • Jung, Gui-Kwon;Park, Jung-Jun;Lee, Jae-Woo;Lee, Jung-Sick
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • This study describes the spermatogenesis and sperm ultrastructure of the spiny top shell, Batillus cornutus using light and electron microscopy. The spiny top shells were collected by divers in the coastal water of Wandogun, Cheollanamdo, Korea(N $34^{\circ}13'$, E $126^{\circ}47'$) at May 2003. Spiny top shells of $60.0{\sim}69.9\;mm$ in shell height were used in this study. The testis comprises many spermatogenic follicles which contains germ cells in different developmental stages. The primary spermatocytes in the pachytene stage were characterized by synaptonemal complexes. The early spermatids were characterized by appearance of Golgi complex, increased karyoplasmic electron density and tubular mitochondria. In early spermatid the mass of proacrosomal granules consists of numerous heterogeneous granules with high electron density. From the mid-stage of spermiogenesis the well-developed mitochondria aggregate posterior to the nucleus, and surround the proximal and distal centrioles. In this stage, proacrosomal granules are condensed and form a acrosome with thin envelope. During the late spermiogenesis, the acrosome begins to elongate and then became conical. The sperm consists of head, mid-piece and tail. The head comprises a round nucleus and a conical acrosome. Acrosomal rod of microfibrous is observed between nucleus and acrosome. Five mitochondria observed in mid-piece. And tail has the typical "9+2" microtubular system originates from the centrioles.

  • PDF

Fine Structural Study of Coelomic Solitary Spermatogenesis in Urechis unicinctus (개불 (Urechis unicinctus) 체강에서의 단위집단 정자형성(Solitary Spermatogenesis)에 관한 미세구조 연구)

  • Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.107-119
    • /
    • 2002
  • Early spermatocytes of U. unicinctus are found in cluster floating in the coelomic fluid. The spermatocytes in a cluster form a syncytium or cytoplasmic mass, but there are no indications that the cytoplasmic mass is a component of a somatic cell. This work suggested that this type of spermatogenesis can be subordinated to solitary spermatogenesis in the sense excluding structural and functional support of a somatic cell for sperm developments. The solitary spermatogenesis in U. unicinctus is different in appearances and developmental details of sperm organelles and stage distributions from that of localized spermatogenesis. The acrosomal rudiments and centrioles can be observed in the early single cells of spermatogonia and clearly disclosed in the primary spermatocyte. In the stage of secondary spermatocyte, the acrosomal precursor and the centrioles begin to move to each cytoplasmic poles. The polarities of the organelles are attained at stage of spermatids. The spermatocytes and spermatids are arranged circumferentially along the cytoplasmic mass in which some amorphological cytoplasmic components are included. The spermatids reveal to be detached from the cytoplasmic mass into coelomic fluid. It suggests that the spermatogenesis are progressed in support of coelomic fluid, and the fact take into consideration that the spermatogenic cells can be in vitro cultured without somatic cells and with supplements of coelomic fluid.

The Ultrastructure of Testis and Spermatogenesis in Bluespotted Mud Hopper(Boleophthalmus pectinirostris) (짱뚱어, Boleophthalmus pectinirostris 정소의 미세구조 및 정자형성)

  • Kang Kyoung Ho;Kho Kang Hee;Kim Jae Min
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • The present study observed the ultrastructure of testis of bluespotted mud hopper(Boleophthalmus pectinirostris), and sperrnatogenesis was discussed also. The testis was surrounded by a thin adventitia, inside which spermatocyst composed the parenchyma of testis. Each lobule was enwrapped by many spermatocysts, which were filled with different kinds of spermatogenic cell clusters at the same developmental stage. In the lobule lumen there are large numbers of spermatozoa The thin adventitia(outer wall) of testis was composed of outer epithelium, and the underlying layers, such as collagen fiber layer, and myoid tissue. The myoid tissue elongated into the inside of testis, became the main componentof interstitium between spermatocyst where sperrnatogenesis occurred. In addition interstitial cells containing dense homogeneous nucleus and abundant mitochondria were observed. Spermatogonia contained round nucleus with diffuse chromatin and nucleolus, and dense nuclear bodies surround by mitochondria in cytoplasm. The synaptonemal . complex was observed in primary spermatocytes clearly. Early spermatid presented larger round nucleus composed of granular chromatin, which was located in the center of cytoplasm. The nucleus of mid-spermatid composed of finely granular chromatin lied on one side of spermatid, and abundant mitochondria had migrated another side. A nuclear fossa appeared in the site near mitochondria in late-spermatid, and the centriole was formed in nuclear fossa.

  • PDF

A Study on the Testicular Cycle of Korean Brown Frog (Rana coreana) (한국산개구리(Rana coreana) 정소주기에 관한 연구)

  • Shin, Jung-Min;Ko, Sun-Kun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.153-158
    • /
    • 2014
  • In order to determine the testicular cycle of the Korean brown frog, Rana coreana, the gonadosomatic index (GSI) and the changes of germ cells in testis for adult males were investigated throughout the year. The study indicated that the spermatogenesis in the seminiferous tubule of testis began in August and became most active in the month of September, and the GSI was recorded the highest and the cross area of seminiferous tubule was the widest on this period. Furthermore the seminiferous tubules at the post spawning stage appeared in testis during February, and the spermatogenesis was quiescence period of time from March to July and the GSI and the cross area of seminiferous tubule were found to be the lowest. Based on these observations, we suggest that, GSI of male Korean brown frog changes significantly between July to August, indicating the testicular cycle with discontinuous spermatogenic process, and the breeding season was confirmed to be February.

Assessing the association of single nucleotide polymorphisms in thyroglobulin gene with age of puberty in bulls

  • Fernandez, Maria Elena;Goszczynski, Daniel Estanislao;Prando, Alberto Jose;Peral-Garcia, Pilar;Baldo, Andres;Giovambattista, Guillermo;Liron, Juan Pedro
    • Journal of Animal Science and Technology
    • /
    • v.56 no.5
    • /
    • pp.17.1-17.4
    • /
    • 2014
  • Puberty is a stage of sexual development determined by the interaction of many loci and environmental factors. Identification of genes contributing to genetic variation in this character can assist with selection for early pubertal bulls, improving genetic progress in livestock breeding. Thyroid hormones play an important role in sexual development and spermatogenic function. The objective of this study was to evaluate the association between single nucleotide polymorphisms (SNPs) located in thyroglobulin(TG) gene with age of puberty in Angus bulls. Four SNPs were genotyped in 273 animals using SEQUENOM technology and the association between markers and puberty age was analyzed. Results showed a significant association (P < 0.05) between these markers and puberty age estimated at a sperm concentration of 50 million and a progressive motility of 10%. This is the first report of an association of TG polymorphisms with age of puberty in bulls, and results suggest the importance of thyroidal regulation in bovine sexual development and arrival to puberty.

A Study on the Testicular Cycle of Asian Toad (Bufo gargarizans) (두꺼비(Bufo gargarizans) 정소주기에 관한 연구)

  • Park, Se-Hwa;Ko, Sun-Kun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.525-532
    • /
    • 2015
  • In order to determine the testicular cycle of the Asian toad, Bufo gargarizans, adult males of the species were captured around Jeongeup city (Jeollabuk-do, Korea) during March, 2012 to February, 2013 and the gonadosomatic index (GSI) and the changes of germ cells in their testes were investigated throughout the year. The study indicated that the spermatogenesis in the seminiferous tubule of testes began in April and became most active in July. The recorded GSI was the highest and the cross area of seminiferous tubule was the widest in this period. The seminiferous tubules at the post spawning stage appeared in February, the largest amounts occurred in March and primary spermatogonia also appeared in this period. The GSI and the cross area of seminiferous tubules were found to be the lowest in March, indicating a testicular cycle with potentially continuous spermatogenic process. According to the findings above, it is confirmed that testicular spermatogenesis takes place actively between April to July in male Asian toad and that their breeding season is February to March.

Spermatogenesis of Coreoperca herzi (Perciformes; Percichthyidae) (꺽지(Coreoperca herzi)의 정자형성)

  • Gye, Myung-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.232-236
    • /
    • 2002
  • In an effort to uncover the reproduction of Korean brook perch Coreoperca herzi testis anatomy and sperm morphology were studied. Fish samples were collected in the Sooypcheon river from May to October 2001. White-colored testes have wedgeshaped external morphology, and developed symmetrically in the dorsal cavity of the trunk. Isogenetic germ cells developed in the cyst located in seminiferous lobule. Each lobule showed significant asynchrony in the spermatogenic stage of the cyst. Sperm was 43 ${\mu}$m in length. The round head was 2.2 ${\mu}$m long. The middle piece developed beneath the head was 0.5 ${\mu}$m long. Tail was 40 ${\mu}$m in length. Coomassie brilliant blue (CBB) gave rise the intense staining in the apex of sperm head and middle piece, suggesting the possible development of acrosome.

Studies on Spermatogenesis in Japanese Quail(Coturnix coturnix japonica) (메추리(Coturnix coturnix)의 정자 발생에 관한 연구)

  • 김재홍;박영석
    • Korean Journal of Poultry Science
    • /
    • v.16 no.2
    • /
    • pp.91-100
    • /
    • 1989
  • This study was conducted to observe 1) the changes of cellular association in seminiferous tubles from 2 to 8 weeks of age, and 2) the cycle phenomena of seminiferous epithelia at 14 weeks of age in Japanese quail. Total 80 birds were examined at a week interval from 2 to 8 weeks, and 14 weeks of age. The results were summarized as follows: 1) The body and testis weights showed most prominent increase during 4 to 5 weeks and 6 to 8 weeks of age respectively. And also the diameters of seminiferous tubles were abruptly enlaged during 6 to 8 weeks of age. 2) Genocytes in the seminiferous tubles were still in existence at 3 weeks of age, however they did not come out after 4 weeks of age. Spermatogonia, primary spermatocytes and spermatids made their first arpearances in the seminiferous from 3, 4 and 6 weeks of age, respectively. Spermatozoa were observed for the first time at 7 weeks of age, but full spermatogenic activity was completed from 8 weeks of age. 3) At 14 weeks of age, the average weight at testis was 3.7g and its ratio to the body weight was approximately 3.0 percent. And at this age, average diameter of seminiferous tubules was 192.08 $\mu\textrm{m}$, and average numbers of spermatogonia, spermatocytes, spermatids and spermatozoa within the cross section of seminiferous tubules were 7.74, 40.81, 28.42, 104.55 and 105.98, respectively. Spermatogonia and spermatid were classfied into 2 and 3 types, respectively. 4) At 14 weeks of age, the cycle of seminiferous epithelium could be divided into S stages with following characteristics. (1) Stage I: Seminiferous tubules showing type I and II spermatids. (2) Stage II: Seminiferous tubules showing type III spermatids only. (3) Stage III: Immature spermatozoa gathered near the sertoli cytoplasm. (4) Stage IV: Forming a bundle of 15-20 spematozoa. (5) Stage V: Spermatozoa bundle leaving the sertoli cytoplasm into lumen of the seminferous tubule. 5) Usually 2-3 stages of the seminiferous epithelium cycle were concurrently appeared within a tubular cross section, and frequency of each stage from I to V within cross section of seminiferous tubules were 11.91%, 27.03%, 27.96%, 19.04% and 17.98%, respectively.

  • PDF