• Title/Summary/Keyword: Spent nuclear fuel assembly

검색결과 78건 처리시간 0.025초

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제40권12호
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

PYROPROCESS WASTE DISPOSAL SYSTEM DESIGN AND DOSE CALCULATION

  • Kook, Dong-Hak;Cho, Dong-Keun;Lee, Min-Soo;Lee, Jong-Youl;Choi, Heui-Joo;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.483-490
    • /
    • 2012
  • PWR spent fuels produced in the Republic of Korea are expected to be recycled by pyroprocess in the long term future. Even though pyroprocess waste amounts can be smaller than that of PWR spent fuel assembly in case of direct disposal, this process essentially will produce various and unique radioactive wastes. The goals of this article are to characterize these wastes, calculate the amount of wastes, design disposal systems for each waste and evaluate the radiation safety of each system by dose assessment. The absorbed dose results of the metal and ceramic waste for the engineering barrier system (EBS) showed $2.21{\times}10^{-2}$ Gy/h and $1.15{\times}10^{-2}$ Gy/h, which are lower than the recommended value of 1 Gy/h. These results confirmed that the newly proposed disposal systems have a safety margin for the radiation produced from each waste.

Fission Product Inventory Calculation by a CASMO/ORIGEN Coupling Program

  • Kim, Do-Heon;Kim, Jong-Kyung;Park, Hangbok;Roh, Gyu-hong;Inha Jung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.70-75
    • /
    • 1997
  • A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14$\times$14 PWR fuel assembly and the results are given in this paper.

  • PDF

Criticality Safety Determination of Spent Fuel Storage Vault (기사용(旣使用) 핵연료저장시(核燃料貯藏時) 핵임계(核臨界) 안전성(安全性) 결정(決定))

  • Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • 제4권1호
    • /
    • pp.1-4
    • /
    • 1979
  • Effective multiplication factor has been calculated for one PWR fresh fuel assembly immersed in a spent fuel storage vault on the basis of the neutron transport theory. A numerical calculation has been carried out by means of Sn approximation. The method employed in this study is that the energy domain is broken into 16 groups, the angular variable is divided into four discrete direction, i.e., $S_4$, and the spatial variable which is divided into fine meshes at the interface between different materials is discretized into 27 mesh points. The calculated $K_{eff}$ value of 0.6145 seems to be far small in comparison with the value obtained by other author for an infinite array of fuel assemblies.

  • PDF

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제17권3호
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.

Thermal Analysis for Dry Transport of a Shipping Cask (수송용기의 건식수송에 대한 열해석)

  • Lee, J.C.;Kang, H.Y.;Yoon, J.H.;Chung, S.H.;Kwack, E.H.
    • Nuclear Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.248-254
    • /
    • 1993
  • The purpose of this study is to evaluate the thermal safety for dry transport of a shipping cask. Analysis condition was based on an ambient temperature of 38$^{\circ}C$ for normal heat condition. The cask was designed to carry 4PWR spent fuel assemblies with a burnup of 38,000 MWD/MTU and 3 years of cooling time. Thermal analysis was carried out by using the COBRA-SFS code. The fuel cavity was considered to be filled with air, nitrogen or helium gas for dry transport. The results of analysis showed that the maximum temperatures of fuel rod cladding in air and helium cavity would be 277$^{\circ}C$ and 226$^{\circ}C$, respectively, for 3 years of cooling time. These values were less than the specified temperature to maintain the thermal integrity of fuel assembly for dry transport.

  • PDF

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.