• Title/Summary/Keyword: Spent battery

Search Result 54, Processing Time 0.031 seconds

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

Recovery of Valuable Metals from Spent Alkaline Manganese Batteries using Sulfuric Acid (폐알카리 망간전지로부터 황산을 이용한 유가금속 회수)

  • Shin, Shun-Myung;Kang, Jin-Gu;Sohn, Jeong-Soo;Yang, Dong-Hyo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.517-520
    • /
    • 2006
  • The leaching behaviors of zinc and manganese oxides of spent alkaline manganeses battery in sulfuric acid solution by using $H_{2}O_{2}$ as a reducing agent were investigated according to the concentration of $H_{2}SO_{4}$, temperature, reaction time, and the amount of $H_{2}O_{2}$. The experimental results of zinc and manganeses dissolution rates obtained without a reducing agent at 100 g/L solid/liquid ratio, 3.0 M $H_{2}SO_{4}$, $60^{\circ}C$ and 200 r.p.m. were 97.7% and 43.5%, respectively. On the other hand, zinc and manganeses dissolution rates obtained by adding 30 mL reducing agent at $60^{\circ}C$ were 99.6% and 97.1%, respectively. The addition of the reducing agent increased the leaching of manganese by two-fold compared to the absence of a reducing agent. In case of adding over 30 mL $H_{2}O_{2}$, however, the leaching rates of zinc and manganeses were independent of reducing agent amounts.

Solvent Extraction Separation of Co, Mn and Zn from leaching solution from Ni-Cd battery by Na-PC88A

  • Ahn Jong-Gwan;Park Kyoung-Ho;Sohn Jeong-Soo;Kim Dong-Jin;Lee Jaereyeong;Jeong HunSaeong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.618-623
    • /
    • 2003
  • Solvent extraction experiments for separation of impurities from Ni-rich solution were carried out for manufacturing of high purity Ni compounds from acid leaching solution of spent Ni-Cd secondary battery. Artificial and leaching solutions were used as aqueous phases and PC88A saponified by sodium in kerosene were used as organic phase. The extraction order is Zn>Mn>Co>Ni and extraction percentage of metal ions was increased with increase of the concentration of extractant, initial pH of aqueous phase and ratio of O/A. The separation of cobalt, zinc and manganese from nickel was effectively accomplished at the condition of extraction stage=l, O/A=1 and initial pH 5.0 with 1.0 $mol/dm^3$ PC88A saponified to $50\%$ with NaOH.

  • PDF

Selective Leaching of $LiCoO_2$in an Oxalic Acid Solution (Oxalic acid용액에서 $LiCoO_2$의 선택침출)

  • 이철경;양동효;김낙형
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.10-16
    • /
    • 2002
  • In the leaching of $LiCoO_2$with a strong acid such as sulfuric and nitric acid, an additional step was needed to recover cobalt and lithium separately from spent lithium ion batteries (LIBs). The leaching of $LiCoO_2$in an oxalic acid solution was investigated to recover cobalt selectively using a low solubility of cobalt oxalate at low pH. Leaching efficiency of 95% of lithium and less than 1% of cobalt were obtained when pure $LiCoO_2$powder was leached in 3M oxalic acid at $80^{\circ}C$ and 50 g/L pulpdensity. Under the above leaching conditions, complete dissolution of lithium was accomplished with mere 0.25% of cobalt in the solution when the cathodic active material collected from spent LIBs was employed. The lithium in the leaching solution can be recovered as a form of carbonate or hydroxide depending on the addition of $Na_2$$CO_3$or LiOH.

A Modified Process for the Separation of Fe(III) and Cu(II) from the Sulfuric Acid Leaching Solution of Metallic Alloys of Reduction Smelted Spent Lithium-ion Batteries (폐리튬이온전지의 용융환원된 금속합금상의 황산침출액에서 철(III)과 구리(II)의 분리를 위한 공정 개선)

  • Nguyen, Thi Thu Huong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys containing Co, Cu, Fe, Mn, Ni, and Si. A process to separate metal ions from the sulfuric acid leaching solution of these metallic alloys has been reported. In this process, ionic liquids are employed to separate Fe(III) and Cu(II). In this study, D2EHPA and Cyanex 301 were employed to replace these ionic liquids. Fe(III) and Cu(II) from the sulfate solution were sequentially extracted using 0.5 M D2EHPA with three stages of cross-current and 0.3 M Cyanex 301. The stripping of Fe(III) and Cu(II) from the loaded phases was performed using 50% (v/v) and 60% (v/v) aqua regia solutions, respectively. The mass balance results from this process indicated that the recovery and purity percentages of the metals were greater than 99%.

Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery (건식 공정을 통한 리튬이차전지의 재활용 연구 동향)

  • Park, Eunmi;Han, Chulwoong;Son, Seong Ho;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.27-39
    • /
    • 2022
  • The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expected to surpass the supply of lithium from natural resources in the near future, posing a risk to the global lithium supply chain. Moreover, the continuous accumulation of end-of-life LIBs is expected to cause serious environmental problems. To solve these problems, recycling the spent LIBs must be viewed as a critical technological challenge that must be urgently addressed. In this study, recycling LIBs using pyrometallurgical processes and post-processes for efficient lithium recovery are briefly reviewed along with the major accomplishments in the field and current challenges.

A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery (폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구)

  • Kim, Boram;Ahn, Nak-Kyoon;Lee, Sang-Woo;Kim, Dae-Weon
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • In order to recover the cerium contained in the spent nickel metal hydride batteries (NiMH battery), the recovered rare earth complex precipitates from NIMH were converted into rare earth hydroxides through ion exchange reaction to react with NaOH aqueous solution at a reaction temperature of 70 ℃, for 4 hours. Rare earth hydroxides were oxidized by injecting air at 80 ℃ for 4 hours to oxidize Ce3+ to Ce4+. The oxidation rate of cerium was confirmed to be about 25 % through XPS, and the oxidized powder was separated from the rest of the rare earth using the difference in solubility in dilute sulfuric acid. The finally recovered powder has a crystal phase of cerium hydroxide (Ce(OH)4). The cerium purity of the final product was about 94.6 %, and the recovery rate was 97.3 %.

Recovery and Separation of Nickel from the Spent Ni-Cd Batteries (폐 Ni-Cd전지로부터 Ni의 분리 및 회수에 관한 연구)

  • 김종화;남기열
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2000
  • Consumption of nickel is continuously increasing and the wastes of secondary battery, ferrite and catalyst containing Ni are also generated periodically. Among those wastes, the aim of this research is the recovery of nickel from used Ni-Cd recharge battery. Battery consisted of Ni 24 wt%, Fe 30 wt% and Cd 18.5 wt%. Metal was recovered by solvent extraction after leaching. Cadmium was leached completely in 1N-HCl and Ni was recovered above 70%. 30 vol% MSP-8 separated Cd and Ni completely from acidic leaching solution. In addition $NH_4NO_3$ as one of ammonium salt type leachants showed an excellent leaching selectivity to Ni and Cd. Ni in leached solution was recovered completely by LIX-extractant and more than 70% of Cd in raffinate was by D2EHPA.

  • PDF