• Title/Summary/Keyword: Spent Fuel Transportation

Search Result 81, Processing Time 0.027 seconds

Analysis of Domestic and Overseas Radioactive Waste Maritime Transportation and Dose Assessment for the Public by Sinking Accident (국내·외 방사성폐기물 해상운반 현황 및 침몰사고 시 일반인 선량평가 사례 분석)

  • Ga Eun Oh;Min Woo Kwak;Hyeok Jae Kim;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • Demand for RW transportation is expected to increase due to the continuous generation of RW from nuclear power plants and facilities, decommissioning of plants, and saturation of spent fuel temporary storage facilities. The locational aspect of plants and radiation protection optimization for the public have led to an increasing demand for maritime transportation, necessitating to apprehend the overseas and domestic current status. Given the potential long-term radiological impact on the public in the event of a sinking accident, a pre-transportation exposure assessment is necessary. The objective of this study is to investigate the overseas and domestic RW maritime transportation current status and overseas dose assessment cases for the public in sinking accident. Selected countries, including Japan, UK, Sweden, and Korea, were examined for transport cases, Japan and the U.S were chosen for dose assessment case in sinking accidents. As a result of the maritime transportation case analysis, it was performed between nuclear power plants and reprocessing facilities, from plants to disposal or intermediate storage facilities. HLW and MOX fuel were transported using INF 3 shipments, and all transports were performed low speed of 13 kn or less. As a result of the dose assessment for the public in sinking accident, japan conducted an assessment for the sinking of spent fuel and vitrified HLW, and the U.S conducted for the sinking of spent fuel. Both countries considered external exposure through swimming and working at seashore, and internal exposure through seafood ingestion as exposure pathway. Additionally, Japan considered external exposure through working on board and fishing, and the U.S considered internal exposure through spray inhalation and desalinized water and salt ingestion. Internal exposure through seafood ingestion had the largest dose contribution. The average public exposure dose was 20 years after the sinking, 0.04 mSv yr-1 for spent fuel and 5 years after the sinking, 0.03 mSv yr-1 for vitrified HLW in Japan. In the U.S, it was 1.81 mSv yr-1 5 years after the sinking of spent fuel. The results of this study will be used as fundamental data for maritime transportation of domestic RW in the future.

Development of a Teleoperated Manipulator System for Remote Handling of Spent Fuel Bundles

  • Ahn Sung Ho;Jin Jae Hyun;Yoon Ji Sup
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.214-225
    • /
    • 2003
  • A teleoperated manipulator system has been developed for remote handling of the spent fuel bundles. A heavy-duty power manipulator with high reduction ratio joints is used for the slave manipulator in the developed system since the handling tasks of the spent fuel bundles need power. Also, the universal type master manipulator, which has force reflecting capability, is used for precise remote manipulation. The power manipulators so frequently occur the control input saturation that the precise control performances are not achieved due to the windup phenomenon. An advanced bilateral control scheme compensating for the saturation is applied to the teleoperated manipulator system. The validity of the developed system is verified by the grid cutting and fuel transportation tasks from the mockup spent fuel bundle.

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Development of Model to Evaluate Thermal Fluid Flow Around a Submerged Transportation Cask of Spent Nuclear Fuel in the Deep Sea

  • Guhyeon Jeong;Sungyeon Kim;Sanghoon Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.411-428
    • /
    • 2022
  • Given the domestic situation, all nuclear power plants are located at the seaside, where interim storage sites are also likely to be located and maritime transportation is considered inevitable. Currently, Korea does not have an independently developed maritime transportation risk assessment code, and no research has been conducted to evaluate the release rate of radioactive waste from a submerged transportation cask in the sea. Therefore, secure technology is necessary to assess the impact of immersion accidents and establish a regulatory framework to assess, mitigate, and prevent maritime transportation accidents causing serious radiological consequences. The flow rate through a gap in a containment boundary should be calculated to determine the accurate release rate of radionuclides. The fluid flow through the micro-scale gap can be evaluated by combining the flow inside and outside the transportation cask. In this study, detailed computational fluid dynamic and simplified models are constructed to evaluate the internal flow in a transportation cask and to capture the flow and heat transfer around the transportation cask in the sea, respectively. In the future, fluid flow through the gap will be evaluated by coupling the models developed in this study.

DEVELOPMENT OF A COMPUTER PROGRAM FOR AN ANALYSIS OF THE LOGISTICS AND TRANSPORTATION COSTS OF THE PWR SPENT FUELS IN KOREA

  • Cha, Jeong-Hun;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • It is expected that a substantial amount of spent fuels will be transported from the four nuclear power plant (NPP) sites in Korea to a hypothetical centralized interim storage facility or a final repository in the near future. The cost for the transportation is proportional to the amount of spent fuels. In this paper, a cost estimation program is developed based on the conceptual design of a transportation system and a logistics analysis. Using the developed computer program, named as CASK, the minimum capacity of a centralized interim storage facility (CISF) and the transportation cost for PWR spent fuels are calculated. The PWR spent fuels are transported from 4 NPP sites to a final repository (FR) via the CISF. Since NPP sites and the CISF are located along the coast, a sea-transportation is considered and a road-transportation is considered between the CISF and the FR. The result shows that the minimum capacity of the interim storage facility is 15,000 MTU.

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

Requirements for the Transportation of Spent Nuclear Fuel (SNF) in Terms of Fuel Integrity and Data Needed According to

  • Noh, J.S.;Kim, Y.K.;Kim, T.W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.115-116
    • /
    • 2017
  • For the safe transportation of SNF and licensing, the integrity of SNF should be evaluated carefully. Researches to obtain the data for SNF cladding properties, i.e. impact toughness, DBTT (hydride behavior) when evaluating transportation of SNF, shall be precisely implemented by simulating the condition of real SNF to the hilt, accordingly.

  • PDF