• Title/Summary/Keyword: Spent Fuel Integrity

Search Result 92, Processing Time 0.021 seconds

Thermal Evaluation of the KN-12 Transport Cask

  • Chung, Sung-Hwan;Chae, Kyoung-Myoung;Choi, Byung-Il;Lee, Heung-Young;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • The KN-12 spent nuclear fuel transport cask, which is a Type B(U) package designed to comply with the requirements of Korea Atomic Energy Act[1], IAEA Safety Standards Series No.TS-R-1[2] and US 10 CFR Part 71[3], is designed for carrying up to 12 PWR spent fuel assemblies in a basket structure. The cask has been licensed in accordance with Korea Atomic Energy Act and was fabricated in Korea in accordance with the requirements of ASME B&PV Sec.III, Div.3[4]. The cask must maintain thermal integrity in accordance with the related regulations and be evaluated to verify that the thermal performance of the cask complies with the regulatory requirements. The temperatures of the cask and components were determined by using finite elements methods with a numerical tool, safety tests using an 1/8 height slice model of the real cask were conducted to demonstrate verification of the numerical tool and methods, and heat transfer tests for normal transport conditions were performed as a fabrication acceptance test to demonstrate the heat transfer capability of the cask.

Structural Evaluation of Spent Fuel Dry Storage Cask (사용후연료 건식 저장용기의 구조평가)

  • 서기석;이재한;강경훈;박성원;정성환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.627-631
    • /
    • 2003
  • In a various regulations and standards related to the spent fuel storage, the storage casks should be designed to sustain the structural integrity under the accident conditions of predicted operation and design criteria. These conditions for the structural evaluation requires the drop, tip-over, wind like tornado and typhoon, flood and earthquake. This paper describes the load cases and conceptual evaluation method for the structural evaluation. Preliminary safety analysis of the concrete storage system were peformed.

  • PDF

Seismic Response Analysis of Freestanding Model of a Spent Fuel Storage Cask (사용후연료 저장용기 자유입상 모델의 지진응답해석)

  • 이재한;서기석;구경회;이홍영;최병일;정성환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.58-65
    • /
    • 2003
  • The seismic response analysis of a freestanding spent fuel storage cask model are performed for an artificial time history acceleration generated by the basis on the US NRC RG1.60 response acceleration spectrum. This paper focuses on the structural stability by seismic loads to check the overturing possibility of storage cask and the slipping displacement on bed. Parametric analyses of a simplified cask model are performed to take into account the variations in seismic load magnitude and cask/bed interface friction. The analyses results show that the storage cask has a large marginal integrity in the response acceleration and slipping distance for both design seismic and beyond design seismic loads.

  • PDF

On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

  • Alvarez Holston, Anna-Maria;Stjarnsater, Johan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.663-667
    • /
    • 2017
  • Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below $300^{\circ}C$. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor ($K_{IH}$) to initiate DHC as a function of temperature in Zry-4 for temperatures between $227^{\circ}C$ and $315^{\circ}C$. The experimental technique used in this study was the pin-loading testing technique. To determine the $K_{IH}$, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around $300^{\circ}C$, there was a sharp increase in $K_{IH}$ indicating the upper temperature limit for DHC. The value for $K_{IH}$ at $227^{\circ}C$ was determined to be $2.6{\pm}0.3MPa$ ${\surd}$m.

Development Status for Commercialization of Spent Nuclear Fuel Transportation and Dry Storage System Technology (사용후핵연료 수송/저장시스템 상용화 기술개발 경과)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.271-279
    • /
    • 2018
  • During the seven years from 2009 to 2016, PWR SNF (spent nuclear fuel) transportation and storage systems suitable for domestic conditions were developed by the government to cope with the saturation of wet storage capacity in NPPs. One of the developed systems is a multipurpose metal cask applicable for transportation/storage; the other is a concrete cask dedicated to storage. Efficient cask technologies were secured utilizing the characteristics and experience of relevant industrial, academic and research institutes. Technological independence was also achieved through several patent registrations of research outcomes. To prepare for a rapid increase of demand in the near future, technology transfer of secured patents and technologies to the domestic industry was carried out twice in the years of 2016 and 2017.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

Comparative Study of Finite Element Analysis for Stresses Occurring in Various Models of the Spent Nuclear Fuel Disposal Canister due to the Accidental Drop and Impact on to the Ground (추락낙하 사고 시 지면과의 충돌충격에 의하여 다양한 고준위폐기물 처분용기모델에 발생하는 응력에 대한 유한요소해석 비교연구)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.415-425
    • /
    • 2017
  • Stresses occur in the spent nuclear fuel disposal canister due to the impulsive forces incurred in the accidental drop and impact event from the transportation vehicle onto the ground during deposition in the repository. In this paper, the comparative study of finite element analysis for stresses occurring in various models of the spent nuclear fuel disposal canister due to these impulsive forces is presented as one of design processes for the structural integrity of the canister. The main content of the study is about the design of the structurally safe canister through this comparative study. The impulsive forces applied to the canister subjected to the accidental drop and impact event from the transportation vehicle onto the ground in the repository are obtained using the commercial rigid body dynamic analysis computer code, RecurDyn. Stresses and deformations occurring due to these impulsive forces are obtained using the commercial finite element analysis computer code, NISA. The study for the structurally safe canister is carried out thru comparing and reviewing these values. The study results show that stresses become larger as the wall encompassing the spent nuclear fuel bundles inside the canister becomes thicker or as the diameter of the canister becomes larger. However, the impulsive force applied to the canister also becomes larger as the canister diameter becomes larger. Nonetheless, the deformation value per unit impulsive force decreases as the canister diameter increases. Therefore, conclusively the canister is structurally safe as the diameter increases.

A Structural Analytic Evaluation of a Connote Pad In a Spent Fuel Dry Storage Cask (사용후핵연료 건식저장용기의 콘크리트 받침대에 대한 구조해석평가)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Lee Yeon-Do;Cho Chun-Hyung;Lee Dae-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 2006
  • A spent fuel storage cask is required to prove the safety of a canister under a hypothetical accidental drop condition. A hypothetical accidental drop condition means that a canister is assumed to be a lee drop on to a pad of the storage cask during loading it into a storage cask. A pad of the storage cask absorbs shock to maintain the structural integrities of a canister under a hypothetical accidental drop condition. In this paper a finite element analysis for various pad structures was carried out to improve the structural integrity of a canister under a hypothetical accidental drop condition. A pad of a storage cask was designed a steel structure with concrete. The 1/4 height of a pad was modified with a structure composed of a steel and a polyurethane foam as a impact limiter. The effect of a shape of a steel structure was studied. The effects of the thickness of a steel structure and the density of a polyurethane foam was also studied.

  • PDF

Dynamic Material Testing of Aged Concrete Cores From the Outer Wall of the High-Flux Advanced Neutron Application Reactor

  • JaeHoon Lim;Byoungsun Park;Jongmin Lim;Yun-Young Yang;Sung-Hyo Lee;Sang Soon Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Concrete structures must maintain their shielding abilities and structural integrity over extended operational periods. Despite the widespread use of dry storage systems for spent nuclear fuel, research on the properties of deteriorated concrete and their impact on structural performance remains limited. To address this significant research gap, static and dynamic material testing was conducted on concrete specimens carefully extracted from the outer wall of the High-flux Advanced Neutron Application ReactOr (HANARO), constructed approximately 30 years ago. Despite its age, the results reveal that the concrete maintains its structural integrity impressively well, with static compression tests indicating an average compressive strength exceeding the original design standards. Further dynamic property testing using advanced high-speed material test equipment supported these findings, showing the consistency of dynamic increase factors with those reported in previous studies. These results highlight the importance of monitoring and assessing concrete structures in nuclear facilities for long-term safety and reliability.

Evaluation of Long-term Performance of Metal Seal Through Accelerated Test (가속화 시험을 통한 금속 밀봉재 장기성능 평가)

  • Choi, Woo-seok;Lim, Jongmin;Yang, Yun-young;Cho, Sang Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.237-245
    • /
    • 2020
  • Metal seals are the main components that establish the containment boundary in bolted casks, which store spent nuclear fuel. These seals are degraded by heat and radiation. In addition, creep occurs when the seals are exposed to intense heat for an extended period. This creep results in the stress relaxation of the seals, which consequently impairs the seal integrity. The stress relaxation can reduce the sealing performance of the metal seal, which can further cause leakage in the storage cask. Moreover, the reduction of bolt tension leads to sealing performance degradation. In this study, the results of high-temperature-accelerated tests were obtained to evaluate the containment integrity of metal seals and the decrease in bolt tension. During the tests, the leakage rate, bolt strain, and ambient temperature of the metal seals were measured and analyzed. The metal seals were found to maintain containment integrity for 50 years of storage. The validity of the acceleration test was also investigated.