• Title/Summary/Keyword: Spent Fuel Assemblies

Search Result 75, Processing Time 0.02 seconds

Study on the Radioactive Liquid Waste Treatment of Cooling and Decompression Process of Spent Fuel Assembly Cask (사용후핵연료 집합체 캐스크 감온, 감압 공정의 방사성 액체폐기물 처리 대한 연구)

  • 손영준;전용범;김은가;엄성호;권형문;민덕기;양송열;이은표;이형권
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.83-89
    • /
    • 2003
  • A temperature- and pressure-reducing process is utilized to handle the spent fuel assembly in the post-irradiation examination facility. This process includes three separated unit processes. First one is the decontamination process to clean the spent fuel assembly casks. The second process is the temperature-reducing process to reduce the temperature elevated by decay process in the spent fuel assembly. The third process is the filtration process to remove insoluble particles existed in the casks using filters. Up-to-date technologies as well as practical theories related to the temperature- and pressure-reducing process is reviewed in this report. The test-operation process for various tests and the test results of the temperature- and pressure-reducing process for J-44 and K-23 spent fuel assemblies are also described in detail. This report must be effectively used for the normal operation of the facility with the awareness of unprecedented problems which could occur by continuing operation of the PIE facility.

  • PDF

A Study on the Side Drop Impact of a Nuclear Spent Fuel Shipping Cask (사용후 핵연료 수송용기의 수평낙하충격에 관한 연구)

  • Chung, Sung-Hwan;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.457-469
    • /
    • 1997
  • A nuclear spent fuel shipping cask is required by IAEA and domestic regulations to withstand a 9m free drop condition. In this paper, the structural analysis under the 9m side drop condition was performed to understand the dynamic impact behavior and to evaluate the safety of the cask for 7 PWR nuclear spent fuel assemblies. The analysis result was compared with the measured value of the 9m side drop test for the 1/3 scaled-down model and the accuracy of the 3D analysis was confirmed. Analysis in accordance with the diameter of impact limiters for the proto-type cask were performed. Through the analysis, the impact behaviors due to the side drop and the effects dependent on the diameter of impact limiters were grasped. Maximum stress intensities on each part of the cask were respectively calculated by using the stress evaluation program and the structural safety of the cask was finally evaluated in accordance with the regulations.

RADIATION SAFETY ASSESSMENT FOR KN-12 SPENT NUCLEAR FUEL TRANSPORT CASK USING MONTE CARLO SIMULATION

  • Kim, J.K.;Kim, G.H.;Shin, C.H.;Choi, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The KN-12 spent nuclear fuel (SNF) transport cask is designed for transportation of up to 12 assemblies and is in standby status for being licensed in accordance with Korea Atomic Energy Act. To evaluate radiation shielding and criticality safety of the KN-12 cask, each case of study was carried out using MCNP4B Code. MCNP code is verified by performing benchmark calculation for the KSC-4 SNF cask designed in 1989. As a result of radiation safety evaluation for the KN-12 cask, calculated dose rates always satisfied the standards at the cask surface, at 2m from the surface in normal transport condition, and at 1 m from the surface in hypothetical accident condition. Maximum dose rate was always arisen on the side of the cask. For normal transport condition, photons primarily contribute to dose rate between two kinds of released sources, neutrons and photons, from spent nuclear fuel but for hypothetical accident condition, contrary case was resulted. The level of calculated dose rate was 27.8% of the limit at the cask surface, 89.3% at 2 m from the cask surface, and 25.1% at 1 m from the cask surface. For criticality analysis, keff resulting from the criticality analysis considering the condition of optimum partial flooding with fresh water is 0.89708(0.00065. The results confirm the standards recommended by all regulations on radiation safety.

  • PDF

Thermal Evaluation of the KN-12 Transport Cask

  • Chung, Sung-Hwan;Chae, Kyoung-Myoung;Choi, Byung-Il;Lee, Heung-Young;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • The KN-12 spent nuclear fuel transport cask, which is a Type B(U) package designed to comply with the requirements of Korea Atomic Energy Act[1], IAEA Safety Standards Series No.TS-R-1[2] and US 10 CFR Part 71[3], is designed for carrying up to 12 PWR spent fuel assemblies in a basket structure. The cask has been licensed in accordance with Korea Atomic Energy Act and was fabricated in Korea in accordance with the requirements of ASME B&PV Sec.III, Div.3[4]. The cask must maintain thermal integrity in accordance with the related regulations and be evaluated to verify that the thermal performance of the cask complies with the regulatory requirements. The temperatures of the cask and components were determined by using finite elements methods with a numerical tool, safety tests using an 1/8 height slice model of the real cask were conducted to demonstrate verification of the numerical tool and methods, and heat transfer tests for normal transport conditions were performed as a fabrication acceptance test to demonstrate the heat transfer capability of the cask.

Compound effects of operating parameters on burnup credit criticality analysis in boiling water reactor spent fuel assemblies

  • Wu, Shang-Chien;Chao, Der-Sheng;Liang, Jenq-Horng
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor ($k_{eff}$) versus burnup (B) are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B)-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE)14 $10{\times}10$ boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC)-68 storage cask. The results revealed that the curves of $k_{eff}$ versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of $k_{eff}$, ${\Delta}k$) in some compound effects was not a summation of the all ${\Delta}k$ resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of $k_{eff}$ versus B for both single and compound effects.

Evaluation of the KN-12 Spent Fuel Transport Cask by Analysis

  • Chung, Sung-Hwan;Lee, Heung-Young;Song, Myung-Jae;Rudolf Diersch;Reiner Laug
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.187-201
    • /
    • 2002
  • The KN-12 cask is designed to transport 12 PWR spent nuclear fuels and to comply with the requirements of Korea Atomic Energy Act, IAEA Safety Standards Series No.57-1 and US 10 CFR Part 71 for a Type B(U)F package. It provides containment, radiation shielding, structural integrity, criticality control and heat removal for normal transport and hypothetical accident conditions. W.H 14$\times$14, 16$\times$16 and 17$\times$17 fuel assemblies with maximum allowable initial enrichment of 5.0 wt.%, maximum average burn-up of 50,000 MWD/MTU and minimum cooling time of 7 years being used in Korea will be loaded and subsequently transported under dry and wet conditions. A forged cylindrical cask body which constitutes the containment vessel is closed by a cask lid. Polyethylene rods for neutron shielding are arranged in two rows of longitudinal bore holes in the cask body wall. A fuel basket to accommodate up to 12 PWR fuel assemblies provides support of the fuels, control of criticality and a path to dissipate heat. Impact limiters to absorb the impact energy under the hypothetical accident conditions are attacked at the top and at the bottom side of the cask during transport. Handling weight loaded with water is 74.8 tons and transport weight loaded with water with the impact limiters is 84.3 tons. The cask will be licensed in accordance with Korea Atomic Energy Act 3nd fabricated in Korea in accordance with ASME B&PV Code Section 111, Division 3.

Effectiveness of the neutron-shield nanocomposites for a dual-purpose cask of Bushehr's Water-Water Energetic Reactor (VVER) 1000 nuclear-power-plant spent fuels

  • Rezaeian, Mahdi;Kamali, Jamshid;Ahmadi, Seyed Javad;Kiani, Mohammad Amin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1563-1570
    • /
    • 2017
  • In order to perform dry interim storage and transportation of the spent-fuel assemblies of the Bushehr Nuclear Power Plant, dual-purpose casks can be utilized. The effectiveness of different neutron-shield materials for the dual-purpose cask was analyzed through a set of calculations carried out using the Monte Carlo N-Particle (MCNP) code. The dose rate for the dual-purpose cask utilizing the recently developed materials of $epoxy/clay/B_4C$ and $epoxy/clay/B_4C/carbon$ fiber was less than the allowable radiation level of 2 mSv/h at any point and 0.1 mSv/h at 2 m from the external surface of the cask. By utilization of $epoxy/clay/B_4C$ instead of an ethylene glycol/water mixture, the dose rates on the side surface of the cask due to neutron sources and consequent secondary gamma rays will be reduced by 17.5% and 10%, respectively. The overall dose rate in this case will be reduced by 11%.

Cooling Time Determination of Spent Nuclear Fuel by Detection of Activity Ratio $^{l44}Ce /^{l37}Cs$ (방사능비 $^{l44}Ce /^{l37}Cs$ 검출에 의한 사용후핵연료 냉각기간 결정)

  • Lee, Young-Gil;Eom, Sung-Ho;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Activity ratio of two radioactive primary fission products which had sufficiently different half-lives was expressed as functions of cooling time and irradiation histories in which average burnup, irradiation time, cycle interval time and the dominant fissile material of the spent fuel were included. The gamma-ray spectra of 36 samples from 6 spent PWR fuel assemblies irradiated in Kori unit-1 reactor were obtained by a spectrometric system equipped with a high purity germanium gamma-ray detector. Activity ratio $^{l44}$Ce $^{l37}$Cs, analyzed from each spectrum, was used for the calculation of cooling time. The results show that the radioactive fission products $^{l44}$Ce and $^{l37}$Cs are considered as useful monitors for cooling time determination because the estimated cooling time by detection of activity ratio $^{l44}$Ce $^{l37}$Cs agreed well with the operator declared cooling time within relative difference of $\pm$5 % despite the low counting rate of the gamma-ray of $^{l44}$Ce (about 10$^{-3}$ count per second). For the samples with several different irradiation histories, the determined cooling time by modeled irradiation history showed good agreement with that by known irradiation history within time difference of $\pm$0.5 year. From this result, it would be expected to be possible to estimate reliably the cooling time of spent nuclear fuel without the exact information about irradiation history. The feasibility study on identification of and/or sorting out spent nuclear fuel by applying the technique for cooling time determination was also performed and the result shows that the detection of activity ratio $^{l44}$Ce $^{l37}$Cs by gamma-ray spectrometry would be usefully applicable to certify spent nuclear fuel for the purpose of safeguards and management in a facility in which the samples dismantled or cut from spent fuel assemblies are treated, such as the post irradiation examination facility.mination facility.

  • PDF