• 제목/요약/키워드: Spelling error correction

검색결과 25건 처리시간 0.025초

문맥의존 철자오류 후보 생성을 위한 통계적 언어모형 개선 (Improved Statistical Language Model for Context-sensitive Spelling Error Candidates)

  • 이정훈;김민호;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.371-381
    • /
    • 2017
  • The performance of the statistical context-sensitive spelling error correction depends on the quality and quantity of the data for statistical language model. In general, the size and quality of data in a statistical language model are proportional. However, as the amount of data increases, the processing speed becomes slower and storage space also takes up a lot. We suggest the improved statistical language model to solve this problem. And we propose an effective spelling error candidate generation method based on a new statistical language model. The proposed statistical model and the correction method based on it improve the performance of the spelling error correction and processing speed.

교정사전과 신문기사 말뭉치를 이용한 한국어 철자 오류 교정 모델 (A Spelling Error Correction Model in Korean Using a Correction Dictionary and a Newspaper Corpus)

  • 이세희;김학수
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.427-434
    • /
    • 2009
  • 인터넷 및 모바일 환경의 빠른 발전과 함께 신조어나 줄임말과 같은 철자 오류들을 포함하는 텍스트들이 활발히 통용되고 있다. 이러한 철자 오류들은 텍스트의 가독성을 떨어뜨림으로써 자연어처리 응용들을 개발하는데 걸림돌이 된다. 이러한 문제를 해결하기 위해서 본 논문에서는 철자오류 교정사전과 신문기사 말뭉치를 이용한 철자 오류 교정 모델을 제안한다. 제안 모델은 구하기 쉬운 신문기사 말뭉치를 학습 말뭉치로 사용하기 때문에 데이터 구축비용이 크지 않다는 장점이 있다. 또한 교정사전 기반의 단순 매칭 방법을 사용하기 때문에 띄어쓰기 교정 시스템이나 형태소 분석기와 같은 별도의 외부 모듈이 필요 없다는 장점이 있다. 신문기사 말뭉치와 실제 휴대폰에서 수집한 문자 메시지 말뭉치를 이용한 실험 결과, 제안 모델은 다양한 평가 척도에서 비교적 높은 성능(오교정률 7.3%, F1-척도 97.3%, 위양성율 1.1%)을 보였다.

생성적 적대 신경망(GAN)을 이용한 한국어 문서에서의 문맥의존 철자오류 교정 (Context-Sensitive Spelling Error Correction Techniques in Korean Documents using Generative Adversarial Network)

  • 이정훈;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1391-1402
    • /
    • 2021
  • This paper focuses use context-sensitive spelling error correction using generative adversarial network. Generative adversarial network[1] are attracting attention as they solve data generation problems that have been a challenge in the field of deep learning. In this paper, sentences are generated using word embedding information and reflected in word distribution representation. We experiment with DCGAN[2] used for the stability of learning in the existing image processing and D2GAN[3] with double discriminator. In this paper, we experimented with how the composition of generative adversarial networks and the change of learning corpus influence the context-sensitive spelling error correction In the experiment, we correction the generated word embedding information and compare the performance with the actual word embedding information.

어절 N-gram을 이용한 문맥의존 철자오류 교정 (Context-sensitive Spelling Error Correction using Eojeol N-gram)

  • 김민호;권혁철;최성기
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1081-1089
    • /
    • 2014
  • 문맥의존 철자오류의 교정 방법은 크게 규칙을 이용한 방법과 통계 정보에 기반을 둔 방법으로 나뉘며, 이중 통계적 오류 교정 방법을 중심으로 연구가 진행되었다. 통계적 오류 방법은 문맥의존 철자오류 문제를 어의 중의성 해소 문제로 간주한 방법으로서, 교정 대상 어휘와 대치 후보 어휘로 이루어진 교정 어휘 쌍을 문맥에 따라 분류하는 방법이다. 본 논문에서는 본 연구진의 기존 연구 결과인 교정 어휘 쌍을 이용한 확률 모델의 성능 향상을 위해 어절 n-gram 모델을 기존 모델에 결합하는 방법을 제안한다. 본 논문에서 제안하는 결합 모델은 각 모델을 통해 계산된 문장의 확률을 보간(interpolation)하는 방법과 각각의 모델을 차례대로 적용하는 방법이다. 본 논문에서 제안한 두 가지 결합 모델 모두 기존 모델이나 어절 n-gram만 이용한 모델보다 높은 정확도와 재현율을 보인다.

딥러닝 기반 한국어 맞춤법 교정을 위한 오류 유형 분류 및 분석 (Classification and analysis of error types for deep learning-based Korean spelling correction)

  • 구선민;박찬준;소아람;임희석
    • 한국융합학회논문지
    • /
    • 제12권12호
    • /
    • pp.65-74
    • /
    • 2021
  • 최근 기계 번역 기술과 자동 노이즈 생성 방법론을 기반으로 한국어 맞춤법 교정 연구가 활발히 이루어지고 있다. 해당 방법론들은 노이즈를 생성하여 학습 셋과 데이터 셋으로 사용한다. 이는 학습에 사용된 노이즈 외의 노이즈가 테스트 셋에 포함될 가능성이 낮아 정확한 성능 측정이 어렵다는 한계점이 존재한다. 또한 실제적인 오류 유형 분류 기준이 없어 연구마다 사용하는 오류 유형이 다르므로 질적 분석에 어려움을 겪고 있다. 이를 해결하기 위해 본 논문은 딥러닝 기반 한국어 맞춤법 교정 연구를 위한 새로운 '오류 유형 분류 체계'를 제안하며 이를 바탕으로 기존 상용화 한국어 맞춤법 교정기(시스템 A, 시스템 B, 시스템 C)에 대한 오류 분석을 수행하였다. 분석결과, 세 가지 교정 시스템들이 띄어쓰기 오류 외에 본 논문에서 제시한 다른 오류 유형은 교정을 잘 수행하지 못했으며 어순 오류나 시제 오류의 경우 오류 인식을 거의 하지 못함을 알 수 있었다.

한국어 어휘 의미망(alias. KorLex)의 지식 그래프 임베딩을 이용한 문맥의존 철자오류 교정 기법의 성능 향상 (Performance Improvement of Context-Sensitive Spelling Error Correction Techniques using Knowledge Graph Embedding of Korean WordNet (alias. KorLex))

  • 이정훈;조상현;권혁철
    • 한국멀티미디어학회논문지
    • /
    • 제25권3호
    • /
    • pp.493-501
    • /
    • 2022
  • This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.

교정률 최적화를 위한 한국어 철자교정기의 모듈 배열 (A Research on Module Arrangement of Korean Spelling Corrector to Optimize Correction Rate)

  • 윤근수;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권5호
    • /
    • pp.366-377
    • /
    • 2005
  • 본 논문은 한국어 철자교정기의 최적교정률을 보이는 모듈들의 나열순서를 찾는 연구이다. 철자교정기의 모듈 개수가 n개이면 모듈나열 경우의 수는 n!가지가 가능하므로 철자교정기의 최적 교정률을 계산하기가 힘들어 진다. 실험에 사용한 한국어 철자교정기는 현재 19개 모듈들로 구성되어 있다. 입력데이타에 대해서 19!개 모듈을 적용하여 최적교정률을 찾는 것은 현실적으로 불가능하다. 따라서 주어진 입력데이타에 대해 이론적인 최대교정률과 최소교정률을 구하여 교정률 범위를 구하고, 최대교정률에 근접한 최적교정률에 대한 모듈나열순서를 구하는 것이 논문의 목적이다. 최적교정률을 구하기 위해 경험적 지식을 사용하였다. 실험에 사용한 입력데이타는 신문사에서 몇 년간 발생한 오류어절 753,191개의 집합이다. 이 오류집합에 대해 철자교정기의 이론적인 최대교정률은 $97.28\%$ (732,764개/753,191개)이나 경험적으로 우리가 찾은 최적교정률은 $96.62\%$ (727,750개 /733,191개)이다. 철자교정기의 성능은 $99.31\%$ (727,750개 /732,764개)이다.

통계적 문맥의존 철자오류 교정 기법의 향상을 위한 지역적 문서 정보의 활용 (The Utilization of Local Document Information to Improve Statistical Context-Sensitive Spelling Error Correction)

  • 이정훈;김민호;권혁철
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.446-451
    • /
    • 2017
  • 본 논문에서의 문맥의존 철자오류(Context-Sensitive Spelling Error) 교정 기법은 샤논(Shannon)의 노이지 채널 모형(noisy channel model)을 기반으로 한다. 논문에서 제안하는 교정 기법의 향상에는 보간(interpolation)을 사용하며, 일반적인 보간 방법은 확률의 중간 값을 채우는 방식으로 N-gram에 존재하지 않는 빈도를 (N-1)-gram과 (N-2)-gram 등에서 얻는다. 이와 같은 방식은 동일 통계 말뭉치를 기반으로 계산하는데 제안하는 방식에서는 통계 말뭉치와 교정 문서간의 빈도 정보를 이용하여 보간 한다. 교정 문서의 빈도를 이용하였을 때 이점은 다음과 같다. 첫째 통계 말뭉치에 존재하지 않고 교정 문서에서만 나타나는 신조어의 확률을 얻을 수 있다. 둘째 확률 값이 모호한 두 교정 후보가 있더라도 교정 문서를 참고로 교정하게 되어 모호성을 해소한다. 제안한 방법은 기존 교정 모형보다 정밀도와 재현율의 성능향상을 보였다.

한글 편집거리 알고리즘을 이용한 한국어 철자오류 교정방법 (A Method for Spelling Error Correction in Korean Using a Hangul Edit Distance Algorithm)

  • 박승현;이은지;김판구
    • 스마트미디어저널
    • /
    • 제6권1호
    • /
    • pp.16-21
    • /
    • 2017
  • 컴퓨터가 상용화되면서 일반인들은 문서를 작성하기 위해 컴퓨터를 이용하는 방법을 자주 사용하게 되었다. 컴퓨터를 이용하여 문서를 작성하는 방법은 작성 속도가 빠르고 손의 피로가 적지만 철자오류가 발생할 확률이 매우 높다. 보통 철자오류는 발견하기 쉽기 때문에 곧바로 수정이 가능하지만, 사용자의 지식 부족 혹은 눈에 잘 띄지 않는 철자오류도 존재하기 때문에 철자오류가 존재하지 않는 문서를 작성하기 어렵다. 온라인상에서는 문서 작성에 대한 규칙 및 예절이 미비하기 때문에 철자오류에 의한 문제가 적지만 중요문서에서 발생하는 철자오류는 신뢰도 하락과 같은 큰 문제를 일으킨다. 철자오류 교정은 전문가 또한 완벽하게 수행하기 힘들기 때문에 비전문가인 일반인들을 위한 교정방법연구가 필요하다. 본 논문에서는 한글 편집거리 알고리즘을 이용해 철자오류를 교정하는 연구를 진행한다. 이전 연구를 통해 검출한 철자오류를 수집한 말뭉치 사전에서 등장하는 단어 중 철자오류 단어와 가장 유사한 단어를 발견하여 주위 단어와의 동시등장빈도를 계산하는 것으로 철자오류 교정을 수행하게 된다.

띄어쓰기 및 철자 오류 동시교정을 위한 통계적 모델 (A Joint Statistical Model for Word Spacing and Spelling Error Correction Simultaneously)

  • 노형종;차정원;이근배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권2호
    • /
    • pp.131-139
    • /
    • 2007
  • 본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자 오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대된다.