• Title/Summary/Keyword: Speed sensorless

Search Result 649, Processing Time 0.025 seconds

Sensorless Control Using the Back EMF of PM Generator for 2MW Variable Speed Wind Turbine (역기전력을 이용한 2MW급 가변속 풍력터빈용 영구자석 동기기의 센서리스 제어)

  • Im, Ji-Hoon;Oh, Sang-Geun;Song, Seung-Ho;Lee, Hyen-Young;Kwon, Oh-Jeong;Jang, Jeong-Ik;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.54-60
    • /
    • 2011
  • A PMSG in variable speed wind turbine needs to know the position of rotor for vector control. Since the position sensor has the disadvantage in terms of cost, complexity of the system, a sensorless algorithm is needed. The sensorless strategy using the back EMF estimation is used for PMSG Wind Turbine. This algorithm is comparatively easy to implement than other strategies. This paper introduces the application of stable sensorless control for 2MW direct drive PMSG. In order to confirm the sensorless algorithm, the implementation is proceeded using 2MW direct drive PMSG from no-load condition to full-load condition. To drive 2MW PMSG artificially, 2MW PMSG connected PMSG through the mechanical coupling.

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Speed Sensorless Vector Control of Induction Machine Using an Improves Speed Estimation Algorithm (개선된 속도 추정 알고리즘을 이용한 유도전동기의 속도 센서리스 벡터 제어)

  • 정인화;신명호;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.36-44
    • /
    • 1997
  • For high performance ac drives, the speed sensorless vector control and the stator flux orientation concept have received increasing attention. This paper describes a speed and flux sensorless vector-controlled induction machine(IM) drive based on the stator flux-oriented control. To improve the accuracy and operating range, the control system employs the previously presented speed and flux estimation methods, and then we present a developed method of estimating the speed of IM. In the proposed method all differential and integral terms have been eliminated by giving a very fast, low-cost, effective and practical alternative to the methods currently available. The effectiveness of the proposed method is verified by simulations and experimental results.

  • PDF

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphical Programming (그래픽 프로그래밍 기법을 이용한 주축용 유도전동기의 속도 센서리스 토크감시)

  • Park, Jin-U;Gwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.107-113
    • /
    • 2002
  • To monitor the torque of an induction motor using current, rotating speed has been measured and used to calculate the slip angular velocity. Additional sensor, however, can cause extra expense and trouble. In this paper, a new algorithm is proposed to monitor the torque of vector controlled induction motor without any speed measuring sensor. Only stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm and to monitor the torque of an induction motor in real time. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. From several experiments, the proposed method shows a good estimation of the motor torque under the normal rotational speed.

Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • 김덕기;김종수;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.102-109
    • /
    • 2000
  • In this industrial induction motor speed and torque controlled drive system, the closed loop control usually requires the measurement of speed or position of amotor. However a sensorless drive of an induction motor has several advantages ; low cost and mechanical simplicity. Thus this paper investigates a field oriented control method without speed and flux sensors. The proposed control strategy is based on the Model Reference Adaptive System(MRAS) using a new flux estimator which replaces integrators with two lag circuits as the reference model. This algorithm may overcome several shortages of conventional MRAS such as integrator problems, small EMF at low speed. The simulation and experimental results indicate good speed responses.

  • PDF

A Speed Sensorless SPMSM Position Control System with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 SPMSM의 속도 제어 시스템)

  • Kim, Min-Ho;Kim, Nam-Hun;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.277-280
    • /
    • 2001
  • This paper presents a speed sensorless implementation of digital speed control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) drives with a direct torque control(DTC). The system presented are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed speed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Microprocessor Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (마이크로프로세서를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • 최재영;김성환;권영안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.121-130
    • /
    • 1996
  • Permanent magnet synchronous motor is widely used in industrial drive applications due to high efficiency, high power ratio, and easy maintenance. Position and speed detectors required in this motor increase the drive cost, and reduce the application range. Some papers present the speed control without position and speed detectors using DSP characterized by high processing performance. However, DSP increases the cost, and makes the inplementation difficult. This study has performed the speed control without position and speed detector by means of the microprocessor system which can be easily accessed. The results of simulation and experiment showed comparatively good dynamics in spite of the sensorless system.

  • PDF

Low-Cost Position Sensorless Switched Relutance Motor Drive Using a Single-Controllable Switch Converter

  • Yang, Hyong-Yeol;Kim, Jae-Hyuck;Krishnan, R.
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Elimination of rotor position sensors mechanically coupled with the rotor shaft is attractive to variable speed drives primarily due to increased system reliability and cost reduction. In this regard, search for a simple and robust position sensorless control has been intensified in past few years specifically for low-cost, high-volume applications such as home appliances. This paper describes a new parameter insensitive position sensorless control for switched reluctance motor (SRM) drives satisfying such a need in this market segment. Two consecutive switch-on times of the controllable switch in hysteresis current control are compared to estimate the rotor position and speed. The proposed sensorless control algorithm is very simple to implement since it does not depend on extensive computation or any additional hardware. In addition, the proposed method is robust in that its dynamic performance is least affected by system parameter variations. The proposed approach is demonstrated on a single-controllable-switch-converter-driven SRM with two-phases that lends itself to a system with low cost and compact packaging which comes close to the intended applications. Analysis and simulation results followed by experimental verification are presented to demonstrate the feasibility of the proposed sensorless control method.