• Title/Summary/Keyword: Speed profile

Search Result 748, Processing Time 0.03 seconds

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Simulation Study on Effect of Ge Profile Shape on SiGe HBT Characteristics (Ge profile 변화에 의한 SiGe HBT 소자 특성 시뮬레이션)

  • 김성훈;이미영;김경해;염병렬;황만규;이흥주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.55-58
    • /
    • 2000
  • SiGe heterojuction bipolar transistors (HBT) have been studied and applied for advanced high speed integrated circuits. Device characteristics of SiGe HBT depending on the Ge profile of the transistor base region have been analysed using a device simulator, ATLAS/BLAZE. The models and parameters have been calibrated to the measured characteristics of the device, having a trapeziodal base profile, including the cut-off frequency of 45GHz and the dc current gain of 200. The Ge concentration which increases linearly, exponentially, or root-functionally from the emitter-base junction to the base-collector junction, has been tried to find out the influence on the device characteristics. The cut-off frequency and gain rather strongly depends on the exponential and root-functional Ge base profiles, respectively.

  • PDF

Improving application startup time by automatic profiling (Automatic Usage Profiling을 통한 초기 앱 실행 속도 개선 방법)

  • Chae, Hyangseok;Baik, Jongmoon
    • Journal of Software Engineering Society
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Google released an initial version of Android that runs Dex(Dalvik Executable) through the Dalvik Runtime. Since Dalvik Runtime is based on interpreter, JIT(Just-in-time) compilation has been applied to improve performance. After Lollipop(Android 5.0) Dalvik Runtime has replaced with ART Runtime which support AOT (Ahead-of-time) compilation of Dex into Native Code. The late st Android has a problem that the application execution speed is slow until the AOT compilation is completed according to the actual usage record after the installation of the app. To improve the problem we have investigate the characteristics of profile that can improve the execution speed of the application and generate the profile automatically. Finally we propose a method that can optimize the application at install time. With the proposed method we can optimize selectively at install time and can help improving the execution speed of the app from the initial execution.

Precise Speed Control of Direct Drive PMSM for the Cogging Torque Measurement System (코깅토크 측정장치 직접구동용 영구자석 동기전동기의 정밀속도 제어)

  • Park, Cheol-Hoon;Son, Young-Su;Ham, Sang-Yong;Kim, Byung-In;Yun, Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • Recently PMSM(Permanent magnet synchronous motor) are used for the various direct drive applications such as index table, telescope system and so on. Because the position/speed control performance of direct drive PMSM is directly affected by the torque ripple, there are lots of studies to reduce the cogging torque in the motor design stage. In order to verify the motor design, the reliable cogging torque measurement system is essentially required. The measured motor must be rotated in the constant speed under 1deg/sec so that the cogging torque profile is measured correctly. In this study, the cogging torque measurement system which uses the direct drive PMSM and the speed controller to rotate the measured motor in 0.1rpm(0.6deg/sec) has been developed. Simulink/xPC target was used for the controller and data acquisition system. Based on PI controller, DOB and AFC have been applied to eliminate the low frequency disturbances and the periodic speed ripple. The experimental results show the good performance of the speed regulation for the reference speed 0.1rpm and the reliable profile of the measured cogging torque by the developed speed controller.

An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition (기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구)

  • Lee, Hyun-Ku;Kim, Moo-Suck;Hwang, Sun-Yang;Kwon, O-Jun;Kang, Koo-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.65-66
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the new FF 6th stage automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new FF 6th speed automatic transmissions' output gear. The gear noise was dramatically disappeared and the process and results will offer good guides to the engineers who manufacture the gear with the grinding machine.

  • PDF

Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea (동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향)

  • Kim, Bong-Chae;Choi, Bok-Kyoung;Kim, Byoung-Nam
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

A Study on the Design of Onboard Speed Profile of the ETCS-L2 System (ETCS-L2 차상 속도 프로파일 설계에 대한 연구)

  • Lee, Jong-Seong;Jeon, Jae-Hun;Jung, Gyung-Jang;Kang, Deok-Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.349-354
    • /
    • 2014
  • Other foreign countries already apply ETCS LEVEL 2 in signaling systems. It provides added functions to control a train using wireless communication compared with ETCS LEVEL 1. Nowadays, the ETCS LEVEL 2 system is being applied on revenue services more and more frequently. Therefore, it is necessary to develop ETCS LEVEL 2 to apply in this country. The advanced technology of the ETCS LEVEL 2 system provides continuous control for train protection, and ATP function, by comparing discontinuous controls on ETCS LEVEL 1. ETCS LEVEL 2 is a better system model for improving passenger safety. This paper describes the design of an onboard speed profile for the ETCS LEVEL 2 system and it forecasts the future of ETCS.

Acceleration Optimization of a High-speed LCD Transfer Crane Using Finite Jerk (고속 LCD 이송 시스템의 진동감소를 위한 Finite Jerk 적용 가속도 최적화)

  • Song Tae-Jin;Hong Dae-Sun;Kim Ho-Jong;Bang Duck-Je;Chung Won-Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.110-117
    • /
    • 2006
  • This paper presents the acceleration optimization of a high-speed LCD (Liquid Crystal Display) transfer system for the minimization of vibration. To reduce vibration is one of key requirements for the dynamic control of a high-speed LCD transfer system. In this paper, the concept of finite jerk (the first derivative of acceleration) has been introduced for realizing input acceleration. The profile of finite jerk has been optimized using a genetic algorithm so that vibration effect can be minimized. In order to incorporate a genetic algorithm, the dynamic model of a LCD transfer system which is realized by using the ADAMS software has been linked to the simulation system constructed by the MATLAB. The simulation results illustrated that the duration of finite jerk can be optimized so as to minimize the magnitude of vibration. It has been also shown that the acceleration optimization with finite jerk can make the high-speed motion of a LCD transfer system result in low vibration, compared with the conventional motion control with trapezoidal velocity profile.

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

Numerical wind load estimation of offshore floating structures through sustainable maritime atmospheric boundary layer

  • Yeon, Seong Mo;Kim, Joo-Sung;Kim, Hyun Joe
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.819-831
    • /
    • 2020
  • Wind load is one of the major design loads for the hull and mooring of offshore floating structures, especially due to much larger windage area above water than under water. By virtue of extreme design philosophy, fully turbulent flow assumption can be justified and the hydrodynamic characteristics of the flow remain almost constant which implies the wind load is less sensitive to the Reynolds number around the design wind speed than wind profile. In the perspective of meteorology, wind profile used for wind load estimation is a part of Atmospheric Boundary Layer (ABL), especially maritime ABL (MBL) and have been studied how to implement the profile without losing turbulence properties numerically by several researchers. In this study, the MBL is implemented using an open source CFD toolkit, OpenFOAM and extended to unstable ABL as well as neutral ABL referred to as NPD profile. The homogeneity of the wind profile along wind direction is examined, especially with NPD profile. The NPD profile was applied to a semi-submersible rig and estimated wind load was compared with the results from wind tunnel test.