• 제목/요약/키워드: Speed of Tool Feed

검색결과 343건 처리시간 0.028초

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

CNC에 의한 SM45C 선삭시 절삭성능 평가 (Assessment of Cutting Performance for SM45C using CNC Lathe)

  • 황경충
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

통계적 기법을 이용한 선삭가공 절삭조건에 따른 공구온도 예측 (A Study on the Tool Temperature Estimation for Different Cutting Conditions in Turning Using a Statistical Method)

  • 송길용;문홍현;박병규;김성청;이응석
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.96-102
    • /
    • 2002
  • This study is on the estimation method of toot temperature for different tool nose radius and cutting conditions in turning. Experimental analysis has been performed in different cutting conditions such as cutting speed, feed rate, and depth of cut for the tool nose radius, 0.4R, 0.8R using SMC workpiece materials. Tool temperature is measured using a thermo-couple which is embedded in the insert tip. Using multiple linear regression method, the tool temperature can be determined as an exponential equation with cutting variables and tool nose diameters for the different tool materials. The equations determined in this study show a good correlation for the cutting conditions and can be used for a tool temperature estimation technique. The result indicates that the tool temperature decreases for increasing the tool nose radius in general. Also, nose radius hardly influences on the tool temperature compared with cutting speed, feed rate and depth of cut. This method will be useful for the estimation of tool life and temperature using limited experimental data for given cutting conditions.

리니어모터 고속이송계 응용 디스크 연삭가공시스템에 관한 연구 (Disk grinding process with linear motor feed system)

    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.374-378
    • /
    • 2003
  • From linear motor feed system model, two axis control rules have been applied. As an application process, a flexible disk grinding system process has been also introduced that utilized varying disk orientation with respect to workpiece along with the applied feed speed. A known process model methodologies has been used to fomulate processed surface profiles. Various process conditions including cutting speed, maximum feed speed and orientation angles could applied to observe process results sensitivities. Even though continuous and constant feed speed has been applied to the process, the results from the trapezoidal input velocity profiles would be observed and compared.

  • PDF

고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구 (An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel)

  • 허영무;정태성;양진석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.114-120
    • /
    • 2005
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRc 55) is carried out using small diameter ball endmill. Tool lift and wear characteristics under the various machining parameters are investigated. Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of tool wear and material removal rate.

  • PDF

고경도 금형강의 고속가공시 소직경 볼엔드밀의 마모에 대한 실험적 연구 (An Experimental Study on Tool Wear of Small Diameter Endmill for High Speed Milling of Hardened Mold Steel)

  • 양진석;허영무;정태성
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.57-64
    • /
    • 2006
  • High speed milling experiment on the hardened mold steel (CALMAX at hardness of HRC 55) is carried out using small diameter ball endmills. Tool lift and wear characteristics under the various machining parameters are investigated Effect of dynamic runout on the wear of the tool is also studied. For most of the cases, catastrophic chipping of tool edge is not observed and uniformly distributed wear on the flank surface of the tool is obtained. It is found that lower rate of tool wear is obtained as the cutting speed is increased. Also, high pick feed rate is found to be more favorable in terms of the tool wear and material removal rate.

CBN 공구를 이용한 고속 정면밀링시의 공구마멸 (Tool Wear in High Speed Face Milling Using CBN Tool)

  • 최종순
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.332-338
    • /
    • 2000
  • The high speed machining is now one of the most effective manufacturing methods to achive higher productivity. However, due to the increased cutting temperatures caused by increased cutting speed, tool wear become larger. Especially in high speed face milling, cutting tools are exposed not only to high cutting temperatures, but also to mechanical and thermal shock stresses. It is essential, therefore, to know the wear characteristics of tool materials in high speed machining. This study presents an experimental investigation of the cutting performance of CBN tools in high speed face milling of gray cast iron FC25. The effect of cutting conditions and cutting length on flank wear of CBN tools and roughness of machined surfaces is investigated. The cutting parameters involved were ; cutting speeds in the range of 600to 1800 m/min, feed of 0.1 mm/tooth, and depth of cut of 0.3mm.

  • PDF

금형가공을 위한 고속.고정도 가공기술의 연구 (A study on Processing technology of high-speed and high-accuracy for Metal Mold Cutting)

  • 박희영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.221-226
    • /
    • 1999
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 50m/min using the high speed ball screw. Also, a lot of problems have happened the feed and servo drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed/accuracy control for feed/servo drive system of high speed/accuracy. In this study, we make use of high performance vertical machine center with a ball screw of large-scale-lead. Also, we'll apply the high-speed/accuracy control technology in this part of feedforward control, multi-buffering block size, etc. Using the design of the mechanical element and high-speed precision control, the basic design concept can be established.

  • PDF

특허분석을 통한 공작기계 이송계의 기술 현황과 발전방향 (The Technical Trend and Future Development Direction of Machine Tools Feed Drive System by Patent Mapping)

  • 은인웅;지현수;이지원
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.510-515
    • /
    • 2012
  • Feed drive systems are used to position the machine tool components carrying the cutting tool and workpiece to the desired location. Hence, their positioning accuracy and speed determine the quality and productivity of machine tools. In this paper, technical trend of machine tools feed drive systems are analyzed by patent mapping. And this paper suggested future development direction of feed drive systems. The analysis is carried out by using problem solution map (PSM) for the applied patent during January 2000 and December 2009 in Korea, Japan, EU and U.S.A.

절삭중 밀링공구의 마멸과 음향방출의 관련성에 관한 연구 (A Study on the Wear of Milling Tool and Relativity of Acoustic Emission in Cutting Process)

  • 윤종학;김동성
    • 한국생산제조학회지
    • /
    • 제4권2호
    • /
    • pp.31-37
    • /
    • 1995
  • This study is focused on the prediction of appropriate tool life by clarifying the correlation between progressive tool wear and AE signal. when rcutting SM45C by End mill in machining center. First of all, end mill have a problem that position of sensor sticking because it is revolution tool, but I think that it can be bained specific character according to sticking Sensor in the Vise. Consequently, the following results have been obtained; 1. Each cutting speed of feed rate over 0.1mm had a tendency to increase linearly according to the RMSAE 2. The level of AE signal at the same cutting area was more sensitive to depth of cut tharn the variation of feed rate 3. In the range of cutting duringqr about 75minqr atqr cutting speed 27m/min flankqr wear turns up aboutqr 0.21mm, aboutqr 0.29mm in the caseqr of about 65minqr at 33/min, qr hereby RMSAE increased rapidly at 0.2mm flank wear, also AE-HIT and CUM-CNTS.

  • PDF