• Title/Summary/Keyword: Speed loss

Search Result 1,571, Processing Time 0.032 seconds

Analysis on the Core Loss and Windage Loss in Permanent Magnet Synchronous Motor for High-Speed Application (고속으로 운전되는 영구자석형 동기전동기의 철손 및 풍손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.511-520
    • /
    • 2006
  • Recently, more attention has been paid to the development of high-speed permanent magnet (PM) synchronous motors, since they are conductive to high efficiency, high power density, small size, and low weight. In high-speed PM machines, core loss and windage loss form a larger proportion of the total losses than usual in conventional mid- or low speed machines. This article deals with the analysis on the core loss and windage loss in PM synchronous motor for high-speed application. Using the data information from a manufacturer and non-linear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels. And, the windage loss is calculated according to the variation of the rotational speed, motor inner pressure and temperature.

Bottom Loss Variation of Low-Frequency Sound Wave in the Yellow Sea (황해에서 저주파 음파의 해저손실 변동)

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The sound wave in the sea propagates under the effect of water depth, sound speed structure, sea surface roughness, bottom roughness, and acoustic properties of bottom sediment. In shallow water, the bottom sediments are distributed very variously with place and the sound speed structure varying with time and space. In order to investigate the seasonal propagation characteristics of low-frequency sound wave in the Yellow Sea, propagation experiments were conducted along a track in the middle part of the Yellow Sea in spring, summer, and autumn. In this paper we consider seasonal variations of the sound speed profile and propagation loss based on the measurement results. Also we quantitatively investigate variation of bottom loss by dividing the propagation loss into three components: spreading loss, absorption loss, and bottom loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn, and the propagation losses measured in autumn were smaller than the losses in spring. The spreading loss and the absorption loss did not show seasonal variations, but the bottom loss showed seasonal variations. So it was thought that the seasonal variation of the propagation loss was due to the seasonal change of the bottom loss and the seasonal variation of the bottom loss was due to the change of the sound speed profile by season.

A Modeling and Simulation Implementation on the Power Line Disturbances by Loss of Contact for the High-Speed Railway Vehicle (고속전철 주행시 이선에 따른 전원외란 현상 모델링 및 시뮬레이션 구현)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young;Gimm, Yoon-Myoung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1137-1142
    • /
    • 2008
  • In this paper, an effect on power conversion unit in high-speed railway vehicle by loss of contact between a catenary system and pantograph suppling electrical power to high-speed railway vehicle are investigated. One of the most important needs accompanied by increasing the speed of high-speed railway vehicle is reduced that arc phenomenon by loss of contact brings out EMI. in case of high-speed railway vehicle using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occur. To analysis the effect on loss of contact, it is necessary electrical modeling system between the contact line and the pantograph according to the loss of contact. Therefore analytical model of a contact line and a pantograph is constructed to simulate the behaviour of loss of contact. The reliability of the modeling system is verified by simulation implementation on kinds of loss of contact.

  • PDF

Loss Analysis of Three Phase Induction Motor Connected to Single Phase Source (단상전원에 접속된 3상 유도전동기의 손실분석)

  • Kim, Do-Jin;Jwa, Chong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • This paper analyzes the losses of a Steinmetz connection three-phase induction motor which is supplied by a single-phase source. The T-type equivalent circuit which is taken no-load losses into account is used to determine phase converter capacitive reactances at starting and rated speed by using the condition of the minimum voltage unbalance. The starting and the operating capacitor are replaced at the slip of the same voltage unbalance factor points which are depicted using two capacitive reactances. The operation characteristics are investigated by comparing with those of three-phase balanced operation to find the feasibility of single-phase operation. To analyze the losses of this motor, the output power decrease factor(OPDF), the loss ratio(LR), the no load loss ratio(NLLR), the copper loss ratio(CLR), the stator copper loss ratio(SCLR), and the rotor copper loss ratio(RCLR) are defined and simulated in the whole slip range. The simulated results show that OPDF is maintained almost uniformly, LR is low at low speed and high at high speed, CLR is higher !ban NLLR, but CLR varies concavely and NLLR varies convexly at high speed, SCLR is low at low speed and high at high speed, but SCLR varies convexly at high speed, and RCLR is nearly opposite to SCLR.

Thermal Analysis of a High Speed Induction Motor Considering Harmonic Loss Distribution

  • Duong, Minh-Trung;Chun, Yon-Do;Park, Byoung-Gun;Kim, Dong-Jun;Choi, Jae-Hak;Han, Pil-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1503-1510
    • /
    • 2017
  • In this paper, a thermal analysis of a high speed induction motor with a PWM voltage source was performed by considering harmonic loss components. The electromagnetic analysis of the high speed induction motor was conducted using the time-varying finite element method, and its thermal characteristics were carried out using the lump-circuit method. Harmonic losses from tests in the high frequency region were divided into core loss and conductor loss components using various ratios, in order to determine the loss distributions for the thermal analysis. The results from both the calculations and experiment were validated using a high speed induction motor prototype operating at 20,000rpm.

Analysis of conducted EMI source on powering mode of next generation high-speed train (차세대 고속전철 주행에 따른 전도성 노이즈 요인분석)

  • Kim, Jae-Moon;Kim, Sei-Chan;Kim, Hak-Man
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.948-949
    • /
    • 2008
  • In this paper, an effect on power conversion unit in next generation high-speed train by loss of contact between a contact wire and pantograph supplied electrical power to high-speed train are investigated. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that arc phenomenon by loss of contact brings out EMI. To analysis of conducted EMI source on powering mode of next generation high-speed train, it is necessary electrical modeling system between the contact wire and the pantograph according with loss of contact. Therefore analytical model of a contact wire and a pantograph is constructed to simulate the behaviour of loss of contact. The reliability of the modeling system is verified by simulation implementation on loss of contact.

  • PDF

Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters (수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감)

  • Chang, Chin-Young;Jin, Kang-Hwan;Kang, Jeong-Nam;Park, Dong-Kyu;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.

A Research on Ship Speed Performance (선박의 속력성능에 관한 연구)

  • 권영중
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • Using motions (Maruo) and wave reflection (the author), speed loss due to wind (van Berlekom) and ITTC standard spectrum, and various effects of weather(:such as weather intensity, ship type, ship size and draught) on ship speed performance at sea were investigated. Further, a comparison of the relative effects of weather and hull roughness on speed loss was also studied for a VLCC.

Analysis of Power Characteristics for a Hydromechanical Transmission Considering HSU Flow Loss (HSU의 유량손실을 고려한 정유압 기계식 변속기의 동력특성 해석)

  • Sung, Duk-Hwan;Lee, Geun-Ho;Kim, Hyoung-Eui;Kim, Hyun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1149-1158
    • /
    • 2002
  • An improved hydrostatic unit(HSU) model is proposed by considering the flow loss in order to analyze the power flow characteristics of a hydromechanical transmission(HMT) and a network analysis algorithm is presented to determine the torque and speed of each element of the HMT. To calculate the torque and flow loss of a pump and a motor in HSU, an effort and flow concept is introduced, which can be used to establish a torque and speed matrix in the network analysis. It is found from the network analysis that magnitude of the HSU stroke increases to maintain the same output speed in order to compensate the flow Boss in the HSU and the efficiency of the HMT shows the lowest value in the 1st speed since the HSU has the largest flow loss in the 1st speed and the flow loss decreases as the speed ratio upshifts.