• Title/Summary/Keyword: Speed and current regulator

Search Result 37, Processing Time 0.028 seconds

An Effective Adaptive Autopilot for Ships

  • Le, Minh-Duc;Nguyen, Si-Hiep;Nguyen, Lan-Anh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.720-723
    • /
    • 2005
  • Ship motion is a complex controlled process with several hydrodynamic parameters that vary in wide ranges with respect to ship load condition, speed and surrounding conditions (such as wind, current, tide, etc.). Therefore, to effectively control ships in a designed track is always an important task for ship masters. This paper presents an effective adaptive autopilot ships that ensure the optimal accuracy, economy and stability characteristics. The PID control methodology is modified and parameters of a PID controller is designed to satisfy conditions for an optimal objective function that comprised by heading error, resistance and drift during changing course, and loss of surge velocity or fuel consumption. Designing of the controller for course changing process is based on the Model Reference Adaptive System (MRAS) control theory, while as designing of the automatic course keeping process is based on the Self Tuning Regulator (STR) control theory. Simulation (using MATLAB software) in various disturbance conditions shows that in comparison with conventional PID autopilots, the designed autopilot has several notable advantages: higher course turning speed, lower swing of ship bow even in strong waves and winds, high accuracy of course keeping, shorter time of rudder actions smaller times of changing rudder direction.

  • PDF

Sensorless Control of PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

Flux Sliding-mode Observer Design for Sensorless Control of Dual Three-phase Interior Permanent Magnet Synchronous Motor

  • Shen, Jian-Qing;Yuan, Lei;Chen, Ming-Liang;Xie, Zhen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1614-1622
    • /
    • 2014
  • A novel equivalent flux sliding-mode observer (SMO) is proposed for dual three-phase interior permanent magnet synchronous motor (DT-IPMSM) drive system in this paper. The DT-IPMSM has two sets of Y-connected stator three-phase windings spatially shifted by 30 electrical degrees. In this method, the sensorless drive system employs a flux SMO with soft phase-locked loop method for rotor speed and position estimation, not only are low-pass filter and phase compensation module eliminated, but also estimation accuracy is improved. Meanwhile, to get the regulator parameters of current control, the inner current loop is realized using a decoupling and diagonal internal model control algorithm. Experiment results of 2MW-level DT-IPMSM drives system show that the proposed method has good dynamic and static performances.

A Study for its Characteristics with Electric Variation in an Electrical Discharge Machining (방전가공에서 전기적 변화가 갖는 방전 특성에 관한 연구)

  • 신근하
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.72-79
    • /
    • 1997
  • A study is a experiment which is figure out to optimum discharge cutting condition of the surface roughness, electronic discharging speed and electrode wear ration with Ton , Toff and V(voltage) as an input condition according to the current(Ip) in an electric spark machine : 1) Electrode is utilized Cu and Graphite. 2) Work piece is used the material of carbon steel. The condition of experiment is : 1) Current is varied 0.7(A) to 50(A) and the time of electric discharging to work piece in each time is 30(min) to 60(min). 2) After the upper side of work piece was measured in radius(5$\mu$m) of stylus analyzed the surface roughness to ade the table and graph of Rmax by yielding data. 3) Electro wear ratio is : \circled1Cooper was measured ex-machining and post-machining by the electronic balance. \circled2The ex-machining of graphite measured by it, the post-machining was found the data from volume $\times$specific gravity and analyzed to made its table and graph on ground the data. 4) In order to keep the accuracy of voltage affected to the work piece was equipped with the A.V. R and the memory scope was sticked to the electric spark machine. 5) In order to preserve the precision of current, to get rid of the noise occured by internal resistance of electric spark machine and to force injecting for the discharge fluid , it made the fixed table for a work piece to minimize the work error by means of one's failure during the electric discharging.

  • PDF

Design and Implementation of Green Coastal Lighting System for Entrance to Coastal Pier

  • Jae-Kyung Lee;Jae-Hong Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • The hardware of an LED lighting control system for coastal lighting at coastal pier entrance consists of a power supply unit, an AVR control unit, a CLCD output unit, an LED control unit, a scenario selection switch unit, and an operation speed display unit. It is made of an 8-channel. The CPU used ATmega128 and the FET was used to control the current signal. To operate the CPU, DC 12V was converted to DC 5V using a regulator 7805. A heat sink was used to remove heat generated in the FET. By connecting the load LED module to the manufactured 8-channel LED lighting control system, the operation was confirmed through various production scenarios. In addition, a control system was designed to show the most suitable color for the atmosphere of the coastal pier according to the input value of temperature and illumination using a fuzzy control system. Computer simulation was then conducted. Results confirmed that fuzzy control did not need to store many data inputs due to characteristics of artificial intelligence and that it could efficiently represent many output values with simple fuzzy rules.

Implementation of Vector Controller for PMSM Using FPGA (FPGA를 이용한 영구자석 동기 전동기 벡터 제어기의 구현)

  • Kim, Seok-Hwan;Lim, Jeong-Gyu;Seo, Eun-Kyung;Shin, Hwi-Beom;Lee, Hyun-Woo;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2006
  • This paper describes a fully hardware realization of vector controller for the permanent magnet synchronous motor (PMSM) using high density field programmable gate mays (FPGA). In the proposed system, the vector controller including vector transformation , PI regulator, position and speed measurement, current measurement, and space vector PWM blocks is implemented in a FPGA using a VHSIC hardware description language (VHDL). The experimental results using a 1.1kW PMSM are provided to show the validity of the proposed system.

Modeling and Strategic Startup Scheme for Large-Scaled Induction Motors (대용량 유도기 기동 특성 모델링 및 전략적 기동 방법에 관한 연구)

  • Jung, Won-Wook;Shin, Dong-Yeol;Lee, Hak-Ju;Yoon, Gi-Gab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.748-757
    • /
    • 2007
  • This paper is intended to solve the technical problem that fails in large-capacity induction motor starting due to serious voltage drop during starting period. One induction motor that is established already can reach in steady-state using reactor starting method but the voltage magnitude of PCC (point of common coupling) has dropped down a little. When the same capacity induction motor is installed additionally in the PCC, where the existing induction motor is operating, voltage drop becomes more serious by starting of additional induction motor. As a result, the additional induction motor fails in starting. Therefore, voltage compensation method is proposed so that all of two induction motors can be started completely. First, modeling technique is described in order to implement starting characteristics of large induction motor. And then, this paper proposes strategic starting scheme by proper voltage compensation that use no-load transformer tap control (NLTC) and step voltage regulator (SVR) for starting of two large induction motors successfully and improving the feeding network voltage profile during the starting period. The induction motor discussed in this paper is the pumped induction motor of 2500kVA capacity that is operating by KOWACO (Korea Water Resources Corporation). Modeling and simulation is conducted using PSCAD/EMTDC software.

  • PDF