• 제목/요약/키워드: Speed Ratio Rate

검색결과 543건 처리시간 0.032초

디젤기관에 있어서 에멀젼 연료가 연소특성에 미치는 영향 (Effects on the Characteristics of Combustion by using Emulsion Fuel in Diesel Engine)

  • 임재근;조상곤;황상진;유동훈;서장원
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.41-42
    • /
    • 2006
  • A study on the combustion characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 10%, 20%, and main measured items are specific fuel consumption, pressure, ratio of pressure rise, rate of heat release etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) Ratio of pressure rise and rate of heat release are about the same in the case of 10% and 20% of emulsion fuel ratio. 3) Cylinder Pressure increase 11.7%, ratio of pressure rise increase 60.4% in case of emulsion fuel ratio 20% at full load. 4) Rate of heat release increase 76.9% in case of emulsion fuel ratio 20% at full load.

  • PDF

고속 전송을 위한 적응형 FEC 및 전송률 제어 (Adaptive FEC and Rate Adaptation for High-speed Transport)

  • 장혜영;김종원
    • 한국통신학회논문지
    • /
    • 제30권3B호
    • /
    • pp.85-94
    • /
    • 2005
  • 본 논문은 적응형 오류제어 기법을 바탕으로 신뢰성 있는 UDP 기반의 미디어 고속 전송을 제안한다. 제안된 적응형 전송기법은 대역폭의 변화에 효과적으로 대처하기 위해서 네트워크 모니터링을 기반으로 잉여 데이터의 양을 제어한다. 수신측 피드백은 패킷 손실의 유형, 전송률 등의 수신 상황을 송신측이 인지하도록 하여 앞으로 발생될 네트워크 상황을 예측하고 이를 바탕으로 전송률과 적응형 FEC 코드 조합을 적응적으로 제어함으로써 신뢰성 있는 전송을 가능하게 한다. 제안된 시스템의 성능을 측정하기 위한 고속 네트워크에서의 전송 실험은 수백 Mbps의 전송 속도를 보이며 향상된 신뢰성을 보여준다.

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향 (Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구 (A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제26권4호
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

다양한 분사조건과 LPG 액상분사엔진의 연료량 제어 (Various Injection Conditions and Fuel Control of an LPG Liquid Injection Engine)

  • 심한섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2005
  • Fuel injection rate of an injector is affected by various injection conditions such as injection duration, fuel temperature, injection pressure, and voltage in LPG liquid injection systems for either a port-fuel-injection(PFI) or a direct injection(DI) in a cylinder. Even fuel injection conditions are changed, the air-fuel ratio should be accurately controlled to educe exhaust emissions. In this study, correction factor for the fuel injection rate of an injector is derived from the density ratio and the pressure difference ratio. A voltage correction factor is researched from injection test results on an LPG liquid injection engine. A compensation method of the fuel injection rate is proposed for a fuel injection control system. The experimental results for the LPG liquid injection system in a SI-engine show that this system works well on experimental range of engine speed and load conditions. And the fuel injection rate is accurately controlled by the proposed compensation method.

터보과급 디젤기관의 과도운전시 응답성능에 관한 연구 (A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine)

  • 최낙정;이창식
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1575-1582
    • /
    • 1992
  • 본 연구에서는 정상운전 중인 4사이클 6실린더 터보과급 디젤기관에 갑자기 큰 부하가 작용하였을 경우, 기관 및 과급기 관성 모멘트의 변화가 기관과 과급기의 실제 회전속도, 압축기 압력비, 실린더내 공기유량, 연소효율, 배기온도 등의 과도 응 답성능에 미치는 영향을 시뮬레이션해석과 실험을 통하여 규명하였다.

CH4/CHCI3/O2N2 예혼합 화염 구조에서 산소부화의 효과 (Effects Of Oxygen Enrichment on the Structure of CH4/CHCI3/O2N2 Premixed Flames)

  • 이기용
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.893-900
    • /
    • 2003
  • Numerical simulations of freely propagating flames burning stoichiometric C $H_4$/CHC1$_3$/ $O_2$/$N_2$ mixtures are performed at atmospheric pressure in order to understand the effect of the $O_2$ enrichment level and the CHC1$_3$/C $H_4$ molar ratio. A chemical kinetic mechanism is developed, which involves 69 gas-phase species and 379 forward and 364 backward reactions. The calculated flame speeds are compared with the experiments for the flames established at several CHC1$_3$/C $H_4$ molar ratio (R<1), the results of which is in excellent agreement. As a results of the increased $O_2$ enrichment level from 0.21 to 1, the flame speed and the temperature in the burned gas are increased. At high CHC1$_3$/C $H_4$ molar ratio two peak values appear on the $O_2$ consumption rate, which are affected by CC1$_2$$O_2$$_{-}$>C1O+CC1O and H+ $O_2$$_{-}$>O+OH.+OH.