• 제목/요약/키워드: Speed Prediction Model

검색결과 699건 처리시간 0.025초

생성 모형을 사용한 순항 항공기 향후 속도 예측 및 추론 (En-route Ground Speed Prediction and Posterior Inference Using Generative Model)

  • 백현진;이금진
    • 한국항공운항학회지
    • /
    • 제27권4호
    • /
    • pp.27-36
    • /
    • 2019
  • An accurate trajectory prediction is a key to the safe and efficient operations of aircraft. One way to improve trajectory prediction accuracy is to develop a model for aircraft ground speed prediction. This paper proposes a generative model for posterior aircraft ground speed prediction. The proposed method fits the Gaussian Mixture Model(GMM) to historical data of aircraft speed, and then the model is used to generates probabilistic speed profile of the aircraft. The performances of the proposed method are demonstrated with real traffic data in Incheon Flight Information Region(FIR).

MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정 (Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction)

  • 김준봉;오승철;서기성
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.

복합지형에 대한 WAsP의 풍속 예측성 평가 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;유능수;백인수
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.199-207
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

WAsP을 이용한 복잡지형의 풍속 예측 및 보정 (Wind Speed Prediction using WAsP for Complex Terrain)

  • 윤광용;백인수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.268-273
    • /
    • 2008
  • A linear wind prediction program, WAsP, was employed to predict wind speed at two different sites located in complex terrain in South Korea. The reference data obtained at locations more than 7 kilometers away from the prediction sites were used for prediction. The predictions from the linear model were compared with the measured data at the two prediction sites. Two compensation methods such as a self-prediction error method and a delta ruggedness index (RIX) method were used to improve the wind speed prediction from WAsP and showed a good possibility. The wind speed prediction errors reached within 3.5 % with the self prediction error method, and within 10% with the delta RIX method. The self prediction error method can be used as a compensation method to reduce the wind speed prediction error in WAsP.

  • PDF

풍속 예측모델 기반 풍력발전단지의 퍼지 모델링 및 강인 안정도 해석 (Fuzzy Modeling and Robust Stability Analysis of Wind Farm based on Prediction Model for Wind Speed)

  • 이덕용;성화창;주영훈
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.22-28
    • /
    • 2014
  • This paper proposes the fuzzy modeling and robust stability analysis of wind farm based on prediction model for wind speed. Owing to the sensitivity of wind speed, it is necessary to study the dynamic equation of the variable speed wind turbine. In this paper, based on the least-square method, the wind speed prediction model which is varied by the surrounding environment is proposed so that it is possible to evaluate the practicability of our model. And, we propose the composition of intelligent wind farm and use the fuzzy model which is suitable for the design of fuzzy controller. Finally, simulation results for wind farm which is modeled mathematically are demonstrated to visualize the feasibility of the proposed method.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

고속철도 환경소음예측을 위한 계산 모델 제안 (A Proposal on Calculation Model to Predict Environmental Noise Prediction Emitted by High Speed Trains)

  • 조대승;조준호;김진형;장강석;윤제원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.843-848
    • /
    • 2011
  • Planning and construction of railway for high speed trains up to 400 km/h are recently driven in Korea. High speed train is one of the environment-friendly fastest mass transportation means but its noise generated by rolling, traction and aerodynamic mechanism can cause public complaints of residents nearby railways. To cost-effectively prevent the troublesome noise in a railway planning stage, the rational railway noise prediction method considering the characteristics of trains as well as railway structures should be required but it is difficult to find authentic methods for Korean high speed trains such as KTX and KTX-II. In this study, we propose a framework of our own railway noise prediction model emitted by Korean high speed trains over 250 km/h based on the recent research results carried out in EU countries. The model considers railway sound power level using several point sources distributed in heights as well as tracks, whose detail speed- and frequency-dependent emission characteristics of Korean high speed trains should be determined in near future by measurement or numerical analysis. The attenuation during propagation outdoors is calculated by the well-known ISO 9613-2 and auxiliary methods to consider undulated terrain and wind effect.

  • PDF

시공간적 영향력을 반영한 딥러닝 기반의 통행속도 예측 모형 개발 (Development of Traffic Speed Prediction Model Reflecting Spatio-temporal Impact based on Deep Neural Network)

  • 김영찬;김준원;한여희;김종준;황제웅
    • 한국ITS학회 논문지
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2020
  • 4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.

열간사상압연 통판안정성 개선을 위한 속도설정모델 개발 (Development of Rolling Speed Set-up Model for the Travelling Stability in Hot Strip Finishing Mill)

  • 문영훈;김영환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.47-56
    • /
    • 1999
  • New rolling speed prediction model has been developed for the precise presetting rolling speed of each finishing mill stand in the tandem hot strip mill. Those factors such as neutral point, work roll diameter, rolling torque, friction coefficient, bite angle and the thickness at each side of entry and deliver of the rolls were taken into account. To consider width effect on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

An improved method for predicting recurrence period wind speed considering wind direction

  • Weihu Chen;Yuji Tian;Yingjie Zhang
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.85-100
    • /
    • 2024
  • In light of extreme value distribution probability, an improved prediction method of the Recurrence Period Wind Speed (RPWS) is constructed considering wind direction, with the Equivalent Independent Wind Direction Number (EIWDN) introduced as a parameter variable. Firstly, taking the RPWS prediction of Beijing city as an example, the traditional Cook method is used to predict the RPWS of each wind direction based on the measured wind speed data in Beijing area. On basis of the results, the empirical formulae to determine the parameter variables are fitted to construct an improved expression of the non-exceedance probability of the RPWS. In this process, the statistical model of the optimal threshold is established, and thus the independent wind speed samples exceeding the threshold are extracted and fitted to follow the Generalized Pareto Distribution (GPD) model for analysis. In addition, the Extreme Value Type I (EVT I) distribution model is used to predict and analyze the RPWS. To verify its wide applicability, the improved method is further used in cities like Jinan, Nanjing, Wuxi, Shanghai and Shenzhen to predict and analyze the RPWS of each wind direction, and the prediction results are compared against those gained via the traditional Cook method and the whole direction. Results show that the 50-year RPWS results predicted by the improved method are basically consistent with those predicted by the traditional method, and the RPWS prediction values of most wind directions are within the envelope range of the whole wind direction prediction value. Compared with the traditional method, the improved method can readily predict the RPWS under different return periods through empirical formulae, and avoid the repeated operation process and some assumptions in the traditional Cook method, and then improve the efficiency of prediction. In addition, the improved RPWS prediction results corresponding to the GPD model are slightly larger than those of the EVT I distribution model.