• Title/Summary/Keyword: Speed Prediction

Search Result 1,495, Processing Time 0.027 seconds

CNN-LSTM based Wind Power Prediction System to Improve Accuracy (정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템)

  • Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

Computational Prediction of Speed Performance for a Ship with Vortex Generators (와류생성기를 부착한 선박의 속도성능에 대한 수치적 추정)

  • Choi, Jung-Eun;Kim, Jung-Hun;Lee, Sang-Bong;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.136-147
    • /
    • 2009
  • The computational prediction method of speed performance for a ship with vortex generators is proposed. The Reynolds averaged Navier-Stokes equation has been solved together with the application of Reynolds stress turbulence model. The computations are carried out under identical conditions of the experimental method, i.e., towing and self-propulsion calculations without and with vortex generators. The speed performance in full scale is obtained through analyzing the computational results in model scale according to the revised model-ship performance analysis method of ITTC'78 with considering the vortex generators into account. The characteristics of resistance, self-propulsion and wake characteristics on the propeller plane are investigated. The proposed computational prediction clearly shows the effect of vortex generators and can be applicable to the design tool for vortex generators.

Speed Prediction and Analysis of Nearby Road Causality Using Explainable Deep Graph Neural Network (설명 가능 그래프 심층 인공신경망 기반 속도 예측 및 인근 도로 영향력 분석 기법)

  • Kim, Yoo Jin;Yoon, Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • AI-based speed prediction studies have been conducted quite actively. However, while the importance of explainable AI is emerging, the study of interpreting and reasoning the AI-based speed predictions has not been carried out much. Therefore, in this paper, 'Explainable Deep Graph Neural Network (GNN)' is devised to analyze the speed prediction and assess the nearby road influence for reasoning the critical contributions to a given road situation. The model's output was explained by comparing the differences in output before and after masking the input values of the GNN model. Using TOPIS traffic speed data, we applied our GNN models for the major congested roads in Seoul. We verified our approach through a traffic flow simulation by adjusting the most influential nearby roads' speed and observing the congestion's relief on the road of interest accordingly. This is meaningful in that our approach can be applied to the transportation network and traffic flow can be improved by controlling specific nearby roads based on the inference results.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

A Study for Assessment Scope Set-up of Road Noise in EIA (환경영향평가시 도로소음 평가범위 설정에 대한 연구)

  • Choi, Joongyu;Sun, Hyosung;Choung, Taeryang
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.4
    • /
    • pp.567-572
    • /
    • 2012
  • This paper suggests the set-up plan of the assessment scope in road noise considering road characteristics with the prediction model of road noise. The RLS90 prediction model with some assumptions is used to establish the assessment scope of road noise. The main contents of the applied assumptions are smooth drive of cars, flat region, location of all noise sources in one lane, drive in design speed, and set-up of assessment scope according to traffic volume and car speed. The information of traffic volume to predict road noise is obtained by the distribution of small cars and full-sized cars in road. In this study, the total traffic volume in road is computed by adding the number of small cars to the conversion number of small cars, which means the number of small cars making the same noise as one full-sized car. The prediction result of road noise with the influence factor of traffic volume, car speed, distance between road and receiver is presented. The resultant assessment scope of road noise is obtained by combining road noise prediction data with the set-up standard of road noise assessment scope.

Improvement of Genetic Programming Based Nonlinear Regression Using ADF and Application for Prediction MOS of Wind Speed (ADF를 사용한 유전프로그래밍 기반 비선형 회귀분석 기법 개선 및 풍속 예보 보정 응용)

  • Oh, Seungchul;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1748-1755
    • /
    • 2015
  • A linear regression is widely used for prediction problem, but it is hard to manage an irregular nature of nonlinear system. Although nonlinear regression methods have been adopted, most of them are only fit to low and limited structure problem with small number of independent variables. However, real-world problem, such as weather prediction required complex nonlinear regression with large number of variables. GP(Genetic Programming) based evolutionary nonlinear regression method is an efficient approach to attach the challenging problem. This paper introduces the improvement of an GP based nonlinear regression method using ADF(Automatically Defined Function). It is believed ADFs allow the evolution of modular solutions and, consequently, improve the performance of the GP technique. The suggested ADF based GP nonlinear regression methods are compared with UM, MLR, and previous GP method for 3 days prediction of wind speed using MOS(Model Output Statistics) for partial South Korean regions. The UM and KLAPS data of 2007-2009, 2011-2013 years are used for experimentation.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Effects of measurements method for vehicle speed on thee prediction results of noise map (차량속도 측정방법이 소음지도 예측결과에 미치는 영향)

  • Park, In-Sun;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.25-29
    • /
    • 2006
  • Noise map presents new alternatives of noise reduction counter measure and becomes important tool for making environmental policy. Many input factors such as road conditions, number of vehicles, speeds of vehicles are used for noise prediction of the noise map. However, results of noise prediction make difference depending on the values of the input factors. In this study, effect of measurement method for vehicle speeds all the prediction results of the noise map.

  • PDF

Effects of Measurement Method for Vehicle Speed on the Prediction Results of Noise Map (속도 측정방법에 따른 소음지도 예측결과 분석)

  • Park, In-Sun;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.155-159
    • /
    • 2007
  • Noise map presents new alternatives of noise reduction counter measure and becomes important tool for making environmental policy. Many input factors such as road conditions, number of vehicles, speeds of vehicles are used for noise prediction of the noise map. However, results of noise prediction make difference depending on the values of the input factors. In this study, it researched effect of measurement method for vehicle speeds on the prediction results of the noise map.

Design wind speed prediction suitable for different parent sample distributions

  • Zhao, Lin;Hu, Xiaonong;Ge, Yaojun
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.423-435
    • /
    • 2021
  • Although existing algorithms can predict wind speed using historical observation data, for engineering feasibility, most use moment methods and probability density functions to estimate fitted parameters. However, extreme wind speed prediction accuracy for long-term return periods is not always dependent on how the optimized frequency distribution curves are obtained; long-term return periods emphasize general distribution effects rather than marginal distributions, which are closely related to potential extreme values. Moreover, there are different wind speed parent sample types; how to theoretically select the proper extreme value distribution is uncertain. The influence of different sampling time intervals has not been evaluated in the fitting process. To overcome these shortcomings, updated steps are introduced, involving parameter sensitivity analysis for different sampling time intervals. The extreme value prediction accuracy of unknown parent samples is also discussed. Probability analysis of mean wind is combined with estimation of the probability plot correlation coefficient and the maximum likelihood method; an iterative estimation algorithm is proposed. With the updated steps and comparison using a Monte Carlo simulation, a fitting policy suitable for different parent distributions is proposed; its feasibility is demonstrated in extreme wind speed evaluations at Longhua and Chuansha meteorological stations in Shanghai, China.